Corporate Social Responsibility and Firm Risk: Theory and Empirical Evidence

Rui Albuquerque Art Durnev Yrjö Koskinen
November 2014

Abstract

This paper presents an industry equilibrium model where firms can choose to engage in corporate social responsibility (CSR) activities. We model CSR activities as an investment in customer loyalty and show that CSR decreases systematic risk. This effect is stronger for firms producing differentiated goods and when consumers’ expenditure share on CSR goods is small. We find supporting evidence for our predictions. In our empirical tests, we address a potential endogeneity problem by instrumenting CSR using data on the political affiliation of the firm’s home state and data on environmental and engineering disasters and product recalls.

Keywords: corporate social responsibility, systematic risk, customer loyalty, industry equilibrium.

*We thank C. B. Bhattacharya, Alberta di Giuli, Ruslan Goyenko, Jonathan Karpo, Anders Löflund, Robert Marquez, Laura Starks, Chen Xue, Chendi Zhang and seminar participants at the BSI Gamma Foundation Conference in Venice, the 2012 FIRS conference, the CalPERS and UC Davis Sustainability & Finance Symposium, 2nd Helsinki Finance Summit, 1st Geneva Summit on Sustainable Finance, the 2014 European Finance Association Meetings, Imperial College Business School, Boston University, University of Iowa, University of Missouri, Tilburg University, Warwick Business School, Norwegian School of Economics, Copenhagen Business School, Lund University, and BI Norwegian Business School for their comments. We also thank ECGI for the Standard Life Investments Finance Prize, the BSI Gamma Foundation for a research grant and the Geneva Summit on Sustainable Finance for the Best Paper Prize. Albuquerque gratefully acknowledges the financial support from a grant from the Fundação para a Ciência e Tecnologia. The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement PCOFUND-GA-2009-246542 and from the Foundation for Science and Technology of Portugal. Albuquerque: Boston University School of Management, Católica-Lisbon School of Business and Economics, CEPR, and ECGI. Address: Boston University School of Management, 509 Commonwealth Avenue, Boston, MA 02215. E-mail: ralbuque@bu.edu. Durnev: Tippie College of Business, University of Iowa. Address: 108 John Pappajohn Building, Iowa City, IA 52242. E-mail: artemdurnev@uiowa.edu. Koskinen: The Wharton School, University of Pennsylvania. Address: 2455 Steinberg-Dietrich Hall, 3620 Locust Walk, Philadelphia, PA 19104. E-mail: yrjo@wharton.upenn.edu. The usual disclaimer applies.
1 Introduction

Corporate social responsibility (CSR) has long been a strategic concern for corporations around the world, responding to the interest shown by both consumers and investors. A recent UN Global Compact-Accenture CEO Study on Sustainability (2013) of over 1000 CEOs listed brand, trust and reputation, together with consumers as their primary motivations to invest in CSR. Investors have also recognized the importance of CSR initiatives. In 1970 the landmark court decision Medical Committee for Human Rights v. SEC opened the door for CSR proposals to be included in proxy statements (Glac, 2010).1 Dimson, Karakas and Li (2014) provide evidence on how investors engage corporations into adopting CSR initiatives and the effect of these engagements on firm value. In the 1990’s the Global Reporting Initiative, later in partnership with the U. N. Environment Program and the Organization for Economic Cooperation and Development, offered corporations the first standardized reporting framework for CSR. The pressure from consumers and investors alike to adopt CSR policies is so significant that the Economist concluded in 2008 that “[t]he CSR industry, as we have seen, is in rude health. Company after company has been shaken into adopting a CSR policy: it is almost unthinkable today for a big global corporation to be without one.”

Arguably, CSR’s increased popularity inside boardrooms has outpaced the research needed to justify it. No longer necessarily viewed outside the profit-maximizing framework, questions remain on how CSR affects firm value (Starks, 2009). Does CSR affect systematic risk over and above its effect on firm cash flows (Bénabou and Tirole, 2010)? How are firms affected by their peers’ CSR choices? Is the effect of CSR on firm risk different across industries? Are profits of CSR firms relative to non-CSR firms counter-cyclical as would be the case if their systematic risk is lower? In this paper we investigate these questions theoretically and provide evidence consistent with the theory.

1The Court sided with Medical Committee for Human Rights and asked the SEC to reconsider Dow Chemical’s shareholders’ right to submit a proposal to stop selling napalm.
In this paper, we model CSR as an investment in customer loyalty for four main reasons. First, the assumption that CSR is associated with customer loyalty follows from an extensive marketing and economics literature that shows that firms that engage in CSR face a relatively less price elastic demand and can charge higher prices (e.g. Bhattacharya and Sen, 2003, Ellenstein and McManus, 2010, and Ellenstein et al., 2012). Second, the UN Global Compact-Accenture CEO Study cited above reveals that consumers are CEOs’ primary motivation to invest in CSR (see also Starks, 2009). Third, because we are interested in the asset pricing implications of CSR, the reduced form assumption that CSR increases customer loyalty simplifies the analysis by avoiding having to model the micro-foundations of how firms’ CSR policies translate into higher customer loyalty. Fourth, the simplicity of the assumption that CSR is an investment in loyalty makes transparent that firms—their management and investors—care about CSR because their customers do. We thus offer a complementary approach to thinking about CSR relative to the work of Heinkel, Kraus and Zechner (2001) and Baron (2001, 2008) who assume that investor clienteles, activist pressure or managerial preferences are the motivations for firms’ CSR activities.

We develop an industry equilibrium model where firms make production and CSR investment decisions and embed this model within a standard asset-pricing framework. Greater customer loyalty takes the form of a less price elastic demand and, all else equal, a firm with higher customer loyalty has higher profit margins. However, we show that the decision to invest in CSR is nontrivial. On the one hand, higher profit margins reduce the elasticity of profits to aggregate shocks resulting in more stable cash flows for the firm. The model thus captures the widely held view in the marketing literature that a firm with a more loyal demand has profits that are relatively less sensitive to aggregate economic conditions than a firm with a less loyal demand (see prominently Luo and Bhattacharya, 2006, 2009). From the perspective of a risk-averse investor, a firm facing a more loyal demand exhibits lower systematic risk and is valued more highly. On the other hand, higher profit margins lead
more firms to adopt CSR policies. Consequently, firms with higher adoption costs start implementing CSR policies as well. These higher adoption costs increase systematic risk and lower firm value for the marginal firm. This industry-equilibrium feedback effect contrasts with the first, partial-equilibrium risk-reduction benefit of CSR.

We show that the relative strength of these two effects, and thus the relative riskiness of CSR firms, depends on the expenditure share on CSR goods. A sufficiently small expenditure share on CSR limits the proportion of CSR firms and implies that the marginal CSR firm has lower systematic risk and higher valuation than non-CSR firms. Thus, the two main model predictions are that CSR firms have lower systematic risk and higher firm value. Since lower systematic risk is associated with lower co-movement of net profits with aggregate economic conditions, the model also predicts that the ratio of net profits of CSR firms relative to that of non-CSR firms is countercyclical.

The industry equilibrium of the model allows us to study the effects of CSR adoption across industries. The model predicts that industries with greater product differentiation have a stronger CSR-risk relation. Surprisingly, the model predicts that industries with a larger consumer’s expenditure share on CSR goods have a weaker CSR-risk relation. The reason is that the greater adoption of CSR in those industries results in a marginal CSR firm with higher adoption costs, higher sensitivity to aggregate shocks and systematic risk.

We test the model predictions using a comprehensive dataset on firm-level CSR from MSCI’s ESG STATS database. The sample consists of a panel of U.S. firms from 2003 to 2011 with a total of 23,803 firm-year observations. We construct an overall CSR score that combines information on the firm’s performance across community, diversity, employee relations, environment, product, and human rights attributes. We exclude ESG’s governance attribute to separate our study from those that focus on corporate governance. We estimate firm systematic risk using a three-factor model of returns and, as in our theory, take firm beta to be the coefficient on the market return. Using the estimated betas as
our dependent variables, we run panel regressions with firm and year fixed effects and with control variables that are known to affect systematic risk.

We first document that the level of systematic risk is statistically and economically significantly lower for firms with a higher CSR score. One standard deviation increase in firm CSR score is associated with a firm beta that is lower on average by 0.034, which represents 4% lower systematic risk relative to beta’s sample mean. This effect does not rely exclusively on any single CSR attribute, but the attributes diversity and environment have the largest economic association. Consistent with the risk mechanism in our model and the customer loyalty assumption, we provide evidence that the ratio of CSR firms’ profits to non-CSR firms’ profits is counter-cyclical.

Next, we find evidence supportive of the prediction that the association between CSR and firm beta is stronger in industries with greater product differentiation. We use two measures of product differentiation and we find that the economic magnitude of the CSR-risk association is higher in differentiated goods industries for both measures. We also find evidence supportive of the prediction that industries with a larger expenditure share on CSR goods have a weaker CSR-risk relation. In our model, increased consumer spending in CSR translates into a relatively larger number of firms that adopt CSR policies in an industry and increases the relative valuation of these firms. We therefore test whether the stock market capitalization of the higher-rated CSR firms in an industry is associated with lower betas for CSR firms. We find evidence consistent with this prediction. We view these additional predictions as important tests of the model’s mechanism and also as indirect tests of the hypothesis that CSR helps build customer loyalty.

Endogeneity is a major concern in the CSR literature: a firm’s financial resources may determine its CSR decisions (Hong et al., 2012), or firms that build customer loyalty through other means of branding, and thus have lower systematic risk, might also invest more in CSR. In order to address these concerns, we use a comprehensive set of control variables
that include cash and advertising expenses, in addition to year and firm fixed effects. In addition, we conduct an IV estimation with two novel sets of instruments for CSR. The first instrument is the company’s headquarters’ state political affiliation. Di Giuli and Kostovetsky (2014) show that firms headquartered in Democratic-leaning states are more likely to spend more resources on CSR. In our estimation, we exclude firms that are geographically focused in their state of headquarters. The reason for excluding these firms from our analysis is to alleviate concerns that other state-level variables, such as the state’s wealth inequality, may affect both the level of CSR and the level of firm risk. The second instrument is based on a sample of product recalls, and environmental and engineering disasters at the industry level. These events are likely to raise customers’ concerns and increase the scrutiny for CSR activities at the industry level and to lead to lower CSR scores for the whole industry, in addition to the directly afflicted firm. Consistent with this argument Kini et al. (2013) provide evidence that recalls impose significant spillover costs to the other firms in the same industry, so that rival firms are also harmed. In our tests we exclude from the sample the firms that experienced the product recalls or disasters, so that the instrument is not mechanically linked to the CSR score. While the occurrence of such episodes at the industry level may increase firm-level idiosyncratic risk, for example due to the risk of law suits, it is unlikely that firm beta is related to these exogenous incidents.

In our tests, we confirm that both of these sets of instruments are not endogenous. We find that in both cases instrumented CSR is negatively related to systematic risk as predicted. The economic significance for the instrumented CSR is larger than that implied by the OLS estimates. These results provide strong support for a causal effect of CSR on systematic risk. We conclude our study by providing evidence that higher CSR score is positively associated with higher Tobin’s Q. We conduct OLS and IV estimations but use only the political instruments in the later because the industry or product recalls instrument is likely to impact firm idiosyncratic risk and thus firm value. Consistent with the model,
the association between Tobin’s Q and CSR is stronger for firms in industries with greater product differentiation and where top CSR firms have lower market capitalization.

Section 2 reviews the existing literature. Section 3 presents the model and Section 4 analyzes the equilibrium properties regarding risk and firm value. Section 5 presents the data and the results are in Section 6. Section 7 concludes. Proofs are in the appendix.

2 Related Literature

One of our main contributions is the development of a theory to study the relation between CSR and firm risk when firms respond to consumers’ preferences and to put the analysis into an industry equilibrium framework. We are a part of an established literature that asserts that firms engage in profit-maximizing CSR (e.g. McWilliams and Siegel, 2001). One argument in favor of this approach is that the pursuit of CSR is generally highly publicized, which in the presence of an active market for corporate control can only be rationalized if CSR is in the best interest of the firm and its shareholders. Further, we draw from the research that argues that CSR is a product differentiation strategy (see Navarro, 1988, Webb, 1996, Bagnoli and Watts, 2003, and Siegel and Vitalino, 2007). Direct evidence is observed in the ability of firms to sell more or at higher prices to their consumers those products that have CSR features (e.g., Creyer and Ross, 1997; Auger et al., 2003; Pelsmacker et al., 2005; Elfenbein and McManus, 2010; Elfenbein et al., 2012; Ailawadi et al., 2014).

Our other main contribution is the empirical evaluation of the CSR-firm risk relation. While there is a recent empirical literature documenting a negative association between CSR and firm risk and cost of equity capital (see Sharfman and Fernando, 2008, El Ghoul

2 According to Bénabou and Tirole (2010), the other motivations for CSR policies are delegated philanthropy, where stakeholders delegate social activities they would like to do themselves to corporations, and agency costs, where managers engage in CSR because of private benefits.

3 Intel Corporation provides a good example of how extensively companies report and publicize their CSR activities. Intel has embedded CSR with tangible metrics into its corporate strategy, management systems, and long-term goals and highlights its achievements in a detailed annual CSR report. The report for 2013 can be found at http://csrreportbuilder.intel.com/PDFFiles/CSR_2013_Full-Report.pdf.
et al., 2011, and Oikonomou et al., 2012), these papers do not claim a causal relation. We contribute to this literature by identifying a causal link between CSR and firm systematic risk using instrumental variables, and by presenting further evidence on the nature of the relation across industries as predicted by the model.\footnote{Our model predicts that the effect of CSR on returns occurs through firm’s systematic risk. Some papers study the return performance of CSR stocks after controlling for risk. Overall, the evidence is mixed (see Brammer et al., 2006, and Hong and Kacperczyk, 2009, for a negative association, Renneboog et al., 2008, and Becchetti and Ciciretti, 2009, for no difference in risk-adjusted returns of CSR firms, and Derwall et al., 2005, and Kempf and Osthoff, 2007, for a positive association).}

CSR has received scant attention in the theoretical finance literature. A notable exception is Heinkel et al. (2001), who assume that some investors choose not to invest in non-CSR stocks. This market segmentation leads to higher expected returns and risk for non-CSR stocks, which must be held by only a fraction of the investors (as in Errunza and Losq, 1985, and Merton, 1987). Gollier and Pouget (2014) build a model where socially responsible investors can take over non-CSR companies and create value by turning those into CSR companies, but offer no prediction for firm systematic risk. These papers assume that a subset of investors have a preference for CSR stocks. However, as pointed out by Starks (2009), investors seem to care more about corporate governance than about CSR, and as noted above CEOs seem to care more about consumers when they make their CSR choices. We use the model to make predictions regarding the role of consumers in affecting the CSR-risk relation across industries and we test these predictions empirically. We are therefore able to provide evidence consistent with the main mechanism in the theory.

Our paper is also related to the work on brand assets and firm risk. Rego et al. (2009) find a negative relation between a firm’s brand capital and firm risk. Belo et al. (2014) find that firms with higher investments in brand capital, measured by advertising expenditures, exhibit lower stock returns. In our empirical tests, we control for advertising expenditures and conclude that CSR appears to have an independent role in affecting firm risk.

There is a large empirical literature on the association between CSR and firm value.
Griñan and Mahon (1997) survey an earlier literature and document a positive association between CSR and firm value. Margolis et al. (2010) review 35 years of evidence and show that there is an average a small positive effect. Recent evidence include Galema et al. (2008), Gillan et al. (2010) and Servaes and Tamayo (2013). Krüger (2014) finds a negative effect on stock prices if management is likely to receive private benefits from CSR adoption, but a positive effect if CSR policies are adopted to improve relations with stakeholders. Dimson et al. (2014) find that engagements by institutional investors that lead to changes in firms’ CSR policies are followed by positive abnormal returns, especially in industries that are likely to be consumer-oriented industries. Deng et al. (2013) show that acquirers with high CSR scores experience higher merger announcement returns and better post-merger operating performance. Cheng et al. (2014) provide evidence that CSR activities help relax firms’ financing constraints. Consequently, CSR firms have better access to finance.

While the majority of recent studies has demonstrated clear economic benefits from CSR, Cheng et al. (2013) and Masulis and Reza (2014) provide evidence that an increase in effective managerial ownership leads to a decrease in CSR activities and corporate giving, consistent with the agency cost view of CSR. Both studies measure the marginal effect of changing after-tax ownership on CSR and thus do not show that on average CSR activities destroy value. Interestingly, Ferrell et al. (2014) show that well governed firms engage more in CSR activities, and that CSR activities are positively associated with executive pay-performance sensitivity. The evidence in Ferrell et al. (2014) is difficult to reconcile with the view that CSR is largely motivated by managers’ personal benefits.

3 The Model

3.1 The model setup

Consider an economy where production, asset allocation, and consumption decisions are made over dates 1 and 2. There is a representative investor and a continuum of firms with
unit mass. We present an extension to infinite horizon in an online appendix.

Household sector: There is a representative investor with preferences

\[U(C_1, C_2) = \frac{C_1^{1-\gamma}}{1-\gamma} + \delta E \left[\frac{C_2^{1-\gamma}}{1-\gamma} \right]. \tag{1} \]

The relative risk aversion coefficient is \(\gamma > 0 \) and the parameter \(\delta < 1 \) is the rate of time preference. The expectations operator is denoted by \(E[.]. \) There are two types of goods in the economy. Low elasticity of substitution goods, which we associate with goods produced by socially responsible firms (CSR goods), and high elasticity of substitution goods, which we associate with other firms (non-CSR goods).\(^5\) We label these using the subscripts \(G \) and \(P \), respectively, for green and polluting. A convenient analytical way to model differences in the elasticity of substitution across goods is to use the Dixit-Stiglitz aggregator,

\[C_2 = \left(\int_0^\mu c_i^{\sigma_G} \, di \right)^{\alpha_{G}} \left(\int_\mu^1 c_i^{\sigma_P} \, di \right)^{1-\alpha_{P}}. \]

Accordingly, \(0 < \sigma_j < 1 \) is the elasticity of substitution within \(c_j \), \(j = G, P \) goods. A lower elasticity of substitution implies lower price elasticity of demand and a more “loyal” demand. We therefore are interested in the case \(\sigma_G < \sigma_P \). This mathematical formulation of demand loyalty captures two important dimensions of consumer behavior: consumers that actively seek out firms they see as being good at CSR and consumers that respond negatively to businesses that fall below expected ethical standards (e.g. Creyer and Ross, 1997). The parameter \(\alpha \) is the share of expenditures allocated to CSR goods and is exogenous. In the context of our representative agent model, \(\alpha \) captures the market size for CSR goods.\(^6\) The variable \(\mu \) measures the fraction of CSR firms and is determined in equilibrium.

\(^5\)Gourio and Rudanko (2014) provide microfoundations for our reduced-form way of modelling customer loyalty. In Gourio and Rudanko search frictions create long-term customer relationships that are slow to adjust, i.e., customer loyalty.

\(^6\)High income consumers may have a higher demand for CSR goods. These consumers have a more stable total consumption that also leads to a more loyal demand over the business cycle. We view \(\alpha \) as capturing both the fraction of expenditures that comes from these consumers, as well as the fraction from consumers that actively seek out CSR goods independently of their income.
Investor optimization is subject to two budget constraints. At date 1, the investor is endowed with stocks and with cash $W_1 > 0$ expressed in units of the aggregate good, which can be used for consumption and investment. The investor decides on the date 1 consumption, C_1, stock holdings, D_i, and the total amount of lending to firms, B, subject to the date 1 budget constraint,

$$\int_0^1 Q_i \, di + W_1 \geq C_1 + \int_0^1 Q_i D_i \, di + B,$$

and given the stock prices Q_i and the interest rate r. The presence of $\int_0^1 Q_i \, di$ on the left hand side of the budget constraint (2) indicates, as is usual in models with a representative investor, that the representative investor is both the seller and the buyer of stocks.

The investor decides on the date 2 consumption, c_i, subject to the budget constraint:

$$W_2 \equiv \int D_i \left(\pi_i - B_i (1 + r) \right) \, di + wL + B (1 + r) \geq \int p_i c_i \, di.$$

In the budget constraint, π_i is the operating profit generated by firm i and $B_i (1 + r)$ is the debt repayment by firm i so that $\pi_i - B_i (1 + r)$ is the net profit, and in this two-period model it is also the liquidation payoff. W_2 denotes the consumer’s wealth at the beginning of date 2, w is the wage rate, L is the amount of labor inelastically supplied and p_i is the price of good i. The investor behaves competitively and takes prices as given.

Production sector: At date 1, firms choose which production technology to invest in. The decision is based on expected operating profitability and fixed adoption costs. Each firm is endowed with a technology-adoption cost. Firm i faces a cost of f_{Gi} if it chooses to invest in the CSR technology or a cost $f_P > 0$ if it chooses the non-CSR technology. The distribution of costs f_{Gi} across firms is a uniform that takes values between 0 and 1. Firm i finances f_i by raising debt B_i and therefore has zero cash flow at date 1.

Note that a higher cost f_{Gi} does not translate into a higher benefit for CSR firms. Instead, all CSR firms have access to the same elasticity of substitution, σ_G, independently.
of their fixed cost of investment. This assumption captures the idea that CSR adoption is not equally costly to all firms.7

At date 2, firm i chooses how much to produce of x_i in order to maximize operating profits. Firms act as monopolistic competitors solving:

$$\pi_i = \max_{x_i} \{ p_i(x_i) x_i - w l_i \},$$

subject to the equilibrium inverse demand function $p_i(x_i)$ as well as the constant returns to scale production technology,

$$l_i = A^\eta_i \kappa_i x_i.$$ \hfill (5)

Production of one unit of output requires $A^\eta_i \kappa_i$ units of labor input. η_i measures the sensitivity of firm i’s labor to the productivity shock A and κ_i measures the resource intensity of each technology. We make no assumption regarding the relative magnitudes of η_G and η_P and of κ_G and κ_P, though some views of CSR are associated with the assumptions that CSR firms foster employee loyalty, i.e., $\eta_G < \eta_P$, or are more resource intensive, i.e., $\kappa_G > \kappa_P$.8

Our model thus encompasses several other dimensions of CSR.

There is an aggregate productivity shock, A, realized at date 2 before production takes place. The productivity shock changes the number of labor units needed to produce consumption goods and thus high productivity is characterized by low values of A. The shock A is assumed to have bounded support in the positive real numbers.

Market clearing: At date 1, asset markets clear, $D_i = 1$, for all i, and $B = \int B_i \, di$. At date 2, goods markets clear, $x_i = c_i$, for all i, and the labor market clears, $\int l_i \, di = L$.

7An alternative formulation that delivers identical results regarding firm risk is to assume that all firms adopting the CSR technology have the same fixed cost as the marginal CSR firm. However, there may be several reasons why fixed costs of adopting CSR technologies differ between firms: For example, costs of converting to organic farming may depend on past chemical use, or better governed firms may have stronger R&D or organizational capabilities, and may thus be better positioned to take advantage of green technologies (Amore and Bennedsen, 2014).

8Turban and Greening (1997) argue that CSR activities help to recruit and retain employees.
3.2 Equilibrium

We start by solving the equilibrium at date 2.

Date-2 equilibrium: Let \(\mu \in (0, 1) \) denote the fraction of CSR firms determined in date 1. The outcome of the date-2 equilibrium is given as a function of \(\mu \).

Consider the consumer’s problem. Let \(\lambda \) denote the Lagrange multiplier associated with the date-2 budget constraint (3). The first order condition for each CSR good \(c_l \) is

\[
a C_2^{-\gamma} \left(\int_0^\mu \frac{1}{s_{G_l}} d_i \right)^{\frac{1}{s_{G_l}} - 1} \left(\int_\mu^1 \frac{1}{s_{G_l}} d_i \right)^{\frac{1}{s_{G_l}} - 1} c_l^{s_{G_l} - 1} = \lambda p_l. \tag{6}
\]

There is a similar condition for each non-CSR good. Multiplying both sides of each first order condition by the respective \(c_j \) and integrating over the relevant range gives

\[
a C_2^{1-\gamma} = \lambda \int_0^\mu p_i c_idi, \tag{7}
\]

\[
(1 - \alpha) C_2^{1-\gamma} = \lambda \int_\mu^1 p_j cjadi. \tag{8}
\]

By taking the ratio of these two conditions, it is straightforward to see that the parameter \(\alpha \) gives the expenditure share of CSR goods. The appendix provides the remaining steps that allow us to solve for the demand functions,

\[
 c_l = \alpha \frac{p_l}{\int_0^\mu p_i^{\frac{1}{s_{G_l} - 1}} d_i} W_2, \tag{9}
\]

\[
 c_k = (1 - \alpha) \frac{p_k}{\int_\mu^1 p_i^{\frac{1}{s_{P_k} - 1}} d_i} W_2, \tag{10}
\]

for CSR and non-CSR goods, respectively. Firm \(j \)'s demand elasticity equals \(-\frac{1}{1 - \sigma_j}\). Thus, a lower elasticity of substitution (lower \(\sigma_j \)) is associated with a demand that is less sensitive to price fluctuations and is therefore more loyal.

It remains to find the value of \(\lambda \) as a function of goods prices and date 2 wealth. Adding up (7) and (8) gives \(C_2^{1-\gamma} = \lambda W_2 \). Finally, substituting the demand functions into the consumption aggregator gives the value of \(\lambda \).
We now turn to the firms’ problem. Each firm acts as a monopolistic competitor and chooses x_i according to equation (4). The first order conditions are:

$$\sigma_{Gp_l} = w^{\eta_l} \kappa_l,$$
$$\sigma_{Pp_k} = w^{\eta_k} \kappa_k.$$

The second order condition for each firm is met because $0 < \sigma_j < 1$. Using these first order conditions, we get the optimal value of operating profits,

$$\pi_j = (1 - \sigma_j) p_j x_j.$$ \hspace{1cm} (11)

Goods with lower elasticity of substitution σ_j, i.e. goods with more loyal demand, allow producers to extract higher profits per unit of revenue, all else equal.

To solve for the equilibrium, Walras’ law requires that a price normalization be imposed. We impose that the price of the aggregate consumption good is time invariant, so its price at date 2 equals the price at date 1, which is 1. This normalization imposes an implicit constraint on prices p_l, $1 = \min_{c_i \in \{c_i; C_2 = 1\}} \int_0^1 p_i c_i dl$. The price normalization implies that $W_2 = \int p_l c_l dl = C_2$, from which we obtain the usual condition for the marginal utility of date-2 wealth with constant relative risk aversion preferences, $\lambda = C_2^{-\gamma}$. The next proposition describes the date-2 equilibrium as a function of μ. The proof is in the Appendix.

Proposition 1 For any interior value of μ and any aggregate shock A, a symmetric date-2 equilibrium exists and is unique with goods prices,

$$p_G = \bar{p} A^{(1-\alpha)(\eta_G - \eta_P)} \frac{\sigma_P \kappa_G}{\sigma_G \kappa_P},$$
$$p_P = \bar{p} A^{-\alpha(\eta_G - \eta_P)},$$

consumption,

$$c_G = \frac{\kappa_P \sigma_G}{\sigma_P \kappa_G} A^{-\eta_G},$$
$$c_P = \frac{1 - \alpha}{1 - \mu} A^{-\eta_P},$$
wage rate, \(w = \bar{p}A^{-\bar{\eta}}\sigma_P/\kappa_P \), operating profits,

\[
\pi_G = \bar{p}\bar{x} (1 - \sigma_G) \frac{\alpha}{\mu} A^{-\bar{\eta}},
\]

\[
\pi_P = \bar{p}\bar{x} (1 - \sigma_P) \frac{1 - \alpha}{1 - \mu} A^{-\bar{\eta}},
\]

and marginal utility of wealth, \(\lambda = [\bar{p}\bar{x}]^{-\gamma} A^\gamma \), where \(\bar{p}, \bar{x} > 0 \) are functions of exogenous parameters given in the Appendix, and \(\bar{\eta} = (1 - \alpha) \eta_P + \alpha \eta_G \).

In equilibrium, a higher productivity shock (lower \(A \)) increases the demand for labor and thus also increases the wage rate. The sensitivity of the wage rate to the productivity shock is given by the weighted average of the sensitivities, \(\bar{\eta} \), where the weights are the expenditure shares. Prices of goods increase or decrease in response to a productivity shock depending on which types of goods are more sensitive to the productivity shock, as given by \(\eta_G - \eta_P \). When \(\eta_G - \eta_P < 0 \), the production of non-CSR goods increases in expansions as unit labor costs decrease more for those firms, leading to an increase in the relative price of CSR goods. The opposite occurs if \(\eta_G - \eta_P > 0 \). While the relative price of CSR goods depends on the sign of \(\eta_G - \eta_P \), operating profits for both firm types, \(\pi_i \), and the marginal utility of date-2 wealth, \(\lambda \), depend only upon the weighted average of sensitivities, \(\bar{\eta} \).

Date-1 equilibrium: To solve for the date-1 equilibrium, we need to determine the rate used by the representative investor to discount future profits. Imposing the equilibrium conditions, the date-1 budget constraint gives \(C_1 = W_1 - B \), so that the intertemporal marginal rate of substitution, or stochastic discount factor, becomes:

\[
m \equiv \delta \left(\frac{C_2}{C_1} \right)^{-\gamma} = \bar{m} [\bar{p}\bar{x}]^{-\gamma} A^\gamma \bar{\eta},
\]

(12)

where \(\bar{m} = \delta (W_1 - B)^\gamma \). States of the world with low productivity (high \(A \)), and therefore low consumption, have higher marginal utility of consumption and higher discount factor.

The date-1 equilibrium has the familiar pricing conditions for bonds,

\[
1 = E [m (1 + r)],
\]

(13)
and stocks,

\[Q_i = E[m\pi_i] - f_i. \tag{14} \]

In equilibrium, if there is an interior solution for \(\mu \), then \(Q_j \geq 0 \) and the price of the marginal CSR firm, \(Q^*_G \), has to equal the price of the non-CSR firm,

\[Q_P = Q^*_G. \]

This equality determines the cut-off \(f^*_G \) by imposing the condition that the marginal firm is indifferent between investing or not investing in CSR:

\[E[m\pi_G] - f^*_G = E[m\pi_P] - f_P. \tag{15} \]

At an interior solution for \(\mu \), infra-marginal CSR firms, with \(f_Gi < f^*_G \), have stock prices higher than \(Q^*_G \), because \(\pi_G \) is equal for all CSR firms. At a corner solution with \(\mu = 1 \), \(Q_P \leq Q_G \), for all \(f_G \). At a corner solution with \(\mu = 0 \), \(Q_P \geq Q_G \), for all \(f_G \). Given an equilibrium threshold level \(f^*_G \), the equilibrium mass of CSR firms is \(\mu = \int_0^{f^*_G} d_i = f^*_G \).

We are unable to show analytically existence of date-1 equilibrium for \(\mu \). The next proposition offers a characterization of the solution when an equilibrium exists and states that the proportion of CSR firms is related to the expenditure share of CSR goods.

Proposition 2 At an interior equilibrium for \(\mu \), the proportion of CSR firms in the industry \(\mu < f_P \) if, and only if, \(\alpha < \bar{\alpha} \), where

\[\bar{\alpha} = \frac{(1 - \sigma_P) f_P}{1 - \sigma_G - f_P (\sigma_P - \sigma_G)}. \]

Moreover, the constant \(\bar{\alpha} \) is increasing in \(\sigma_G \) and \(\bar{\alpha} < f_P \) if, and only if, \(\sigma_P > \sigma_G \).

The constant \(\bar{\alpha} \) is the expenditure share at which \(\mu = f_P \). Any expenditure share \(\alpha < \bar{\alpha} \) leads to a proportion \(\mu < f_P \). A more loyal demand for CSR firms, \(\sigma_P > \sigma_G \), implies that

\[\text{We have verified numerical existence of an interior solution for } \mu. \]
the threshold expenditure share $\bar{\alpha} < f_P$. Intuitively, if $\sigma_P > \sigma_G$, then CSR firms are able to extract higher rents for the same expenditure share α and the proportion of CSR firms grows. To place an upper bound on μ, a sufficiently smaller expenditure share α is required.

4 CSR and Risk in Equilibrium

In this section, we analyze the properties of CSR firms’ risk and the proportion of CSR firms in the industry. For simplicity, in what follows, we use the notation $\alpha_j = \alpha$ if $j = G$, and $\alpha_j = 1 - \alpha$ if $j = P$. Likewise, $\mu_j = \mu$ if $j = G$, and $\mu_j = 1 - \mu$ if $j = P$.

4.1 Profitability and aggregate shocks

We start by describing the properties of net profits in response to aggregate shocks. Consider the elasticity of profits to the aggregate shock for a generic firm $j,$

$$
\frac{d \ln (\pi_j - f_j (1 + r))}{d \ln A^{-1}} = \frac{\bar{\eta} \bar{\pi} (1 - \sigma_j) \alpha_j \mu_j A^{-\bar{\eta}}}{\bar{\pi} \bar{x} (1 - \sigma_j) \alpha_j \mu_j A^{-\bar{\eta}} - f_j (1 + r)}.
$$

We compute the elasticity with respect to A^{-1} so that the elasticity is positive (recall that a high value of A^{-1} is an upturn). The sensitivity of firms’ profits to aggregate shocks depends on the degree of customer loyalty. To see this, consider the partial equilibrium effect that increased customer loyalty (lower σ_j) has on the sensitivity of profits to aggregate shocks holding μ constant. The partial derivative with respect to σ_j is positive, implying that a firm with a more loyal demand (lower σ_j) has profits that are less sensitive to aggregate shocks. Similarly, we can show that profits are more sensitive to aggregate shocks when fixed costs f_j are high. The intuition for the result is that a more loyal demand generates greater profit margins for the firm, which dilute the effect of the fixed adoption costs. This partial equilibrium result captures the widely held view that a less price elastic demand gives the firm the ability to smooth out aggregate fluctuations better.

The next proposition extends this partial equilibrium result by considering the equilibrium implications of productivity shocks on the net profits of CSR and non-CSR firms.
Proposition 3 Define the ratio of net profits evaluated at the marginal CSR firm:

\[R_\pi \equiv \frac{\pi_G - f^*_G (1 + r)}{\pi_P - f_P (1 + r)}. \]

\(R_\pi \) is increasing with \(\alpha \) if, and only if, \(\alpha < \bar{\alpha} \).

For a sufficiently small expenditure share in CSR, \(\alpha < \bar{\alpha} \), or for \(\mu < f_P \), the profits of CSR firms are less sensitive to productivity shocks than those of non-CSR firms. That is, net profits of CSR firms relative to the profits of non-CSR firms are countercyclical.

4.2 CSR and systematic risk

To see how the results on profits translate to systematic risk, define the gross return to firm \(j \) as the ratio of its net profits to its stock price, \(1 + r_j \equiv (\pi_j - f_j (1 + r)) / Q_j \). Using equations (13) and (14), we obtain the usual pricing condition in a consumption-CAPM model:

\[E(r_j - r) = -E(m)^{-1} \text{Cov}(m, r_j) \]

\[= -E(m)^{-1} Q_j^{-1} \text{Cov}(m, \pi_j). \]

The expected excess return is determined by the covariance of the stock return with the intertemporal marginal rate of substitution, \(\text{Cov}(m, r_j) \). This covariance depends on how aggregate productivity affects both variables. In the Appendix, we prove that:

Proposition 4 Firm \(j \)'s equilibrium expected excess stock return is:

\[E(r_j - r) = \frac{\bar{p} \bar{x} (1 - \sigma_j) \alpha_j}{\bar{m} [\bar{p} \bar{x}]^{1-\gamma} (1 - \sigma_j) \alpha_j E[A^{(\gamma-1)\eta}]} - \frac{\text{Cov}(A^{-\eta}, A^{\gamma})}{E(A^{\gamma})} \frac{-\text{Cov}(A^{-\eta}, A^{\gamma})}{E(A^{\gamma})}. \]

(16)

The expected excess return is increasing in \(\sigma_j \). Furthermore, at an interior solution for \(\mu \), the marginal CSR firm has

\[E(r_P - r) > E(r_G^* - r) \] if, and only if, \(\bar{\alpha} > \alpha \).
The proposition gives an expression for firm j’s expected excess return. The first term in the expression gives the profit sensitivity to the aggregate shock. It amplifies the term $Cov(A^{-\phi}, A^\gamma)$ that captures how profits co-vary with the stochastic discount factor. This covariance is negative for any risk aversion parameter $\gamma > 0$ and thus $E(r_j - r) > 0$.

Holding μ constant, $E(r_j - r)$ increases with σ_j. Intuitively, increased loyalty (lower σ_j) reduces the sensitivity of the firm’s net profits to aggregate shocks. Such a firm has relatively higher payoffs in states of lower consumption and high marginal utility, and is thus less risky to a risk averse investor and worth more.

The more loyal demand, by increasing firm profits and stock prices, produces a feedback equilibrium effect via an increase in the proportion of CSR firms, μ. The proposition gives a stark result regarding the equilibrium riskiness of CSR versus non-CSR firms. We show that the proportion of CSR firms determines the relative riskiness of CSR versus non-CSR firms: if $\mu \leq f_P$ (or $\alpha \leq \bar{\alpha}$) then the marginal CSR firm has $E(r^*_G - r) \leq E(r_P - r)$. In this case, infra-marginal CSR firms also have higher prices and lower expected returns than non-CSR firms. Therefore, if $\mu \leq f_P$, then on average CSR firms have lower expected excess returns.

When $\mu > f_P$ (or $\alpha > \bar{\alpha}$), then $E(r_P - r) < E(r^*_G - r)$ and the marginal CSR firm has higher fixed adoption costs, profit sensitivity and systematic risk than non-CSR firms. By continuity, infra-marginal firms with fixed costs close to $f^*_G = \mu$ also have higher expected returns, but there may be firms with low enough f^*_G such that $E(r_P - r) > E(r^*_G - r)$.

Systematic risk can also be measured with respect to the market return. Define the value-weighted market return as $1 + r_M \equiv \int (\pi_i - f_i (1 + r)) \, di / \int Q_i \, di$.

Proposition 5 Consider firm j’s market $\beta_j = Cov(r_j, r_M) / Var(r_M)$. We have,

$$\beta_j = \frac{(1 - \sigma_j) \alpha_j}{(1 - \sigma_G) \alpha + (1 - \sigma_P) (1 - \alpha)} \frac{\int Q_i \, di}{\mu_j Q_j}$$

At an interior solution for μ, $\beta_P > \beta^*_G$ if, and only if, $\bar{\alpha} > \alpha$.

\(^{10}\)If investors are risk neutral, i.e., $\gamma = 0$, then $Cov(A^{-\phi}, A^\gamma) = 0$ and $E(r_j - r) = 0$.

18
This proposition compares the level of systematic risk between CSR and non-CSR firms. Consider an equilibrium where the fraction of CSR firms is not too large, i.e., \(\mu \leq f_P \) (or \(\alpha \leq \bar{\alpha} \)). In such an equilibrium, the marginal CSR firm has lower \(\beta \) than a non-CSR firm. In addition, because \(Q_j \geq Q^*_G \) for any infra-marginal CSR firm \(j \), then \(\beta_j \leq \beta^*_G \). Therefore, if \(\mu \leq f_P \), then the average CSR firm has lower market \(\beta \) than the average non-CSR firm. Now consider an equilibrium where the fraction of CSR firms is sufficiently large, i.e., \(\mu > f_P \). When \(\mu > f_P \) (or \(\alpha > \bar{\alpha} \)), the marginal CSR firm has higher market \(\beta \) than non-CSR firms. The reason is that when the proportion of CSR firms is larger, the marginal CSR firm has high fixed adoption costs and high profit sensitivity to aggregate shocks. Hence, high systematic risk.\(^{11}\)

The next proposition indicates the determinants of systematic risk for CSR and non-CSR firms. We are able to derive general analytical results for average betas, \(\bar{\beta}_G \equiv \int_0^\mu \beta_j \frac{Q_j}{Q_i} dj \),

\[
\bar{\beta}_G = \frac{(1 - \sigma_G) \alpha}{(1 - \sigma_G) \alpha + (1 - \sigma_P)(1 - \alpha)}. \tag{17}
\]

The weighted average market \(\beta \) of non-CSR firms is \(\bar{\beta}_P = 1 - \bar{\beta}_G \). If a determinant leads to lower betas for CSR firms, it must lead to higher betas for non-CSR firms and a wider gap between \(\bar{\beta}_G \) and \(\bar{\beta}_P \). Straightforward differentiation of expression (17) yields:

Proposition 6 The weighted average market \(\beta \) of CSR firms decreases with:

1) lower elasticity of substitution in the industry (decrease in \(\sigma_G \) and \(\sigma_P \), keeping \(\sigma_P - \sigma_G \) constant); and,

2) lower expenditure share for CSR goods (decrease in \(\alpha \)).

Together, Propositions 5 and 6 imply that if the firm-level beta for CSR firms is lower than for non-CSR firms in two industries, then that difference is larger in the industry with more loyal consumers (i.e. lower elasticity of substitution) and with a lower expenditure share for CSR goods.

\(^{11}\)Idiosyncratic volatility is zero in the model because we allow for only one shock, which is aggregate.
4.3 Testable Predictions

In this subsection, we collect the model predictions discussed above. From Proposition 5:

Prediction 1 Firm-level CSR is associated with lower firm-level systematic risk.

We test this prediction by regressing firm-level systematic risk on the firm’s CSR attributes, controlling for known determinants of systematic risk. In addition, we control for determinants of customer loyalty associated with other product characteristics to emphasize the independent effect from CSR. We estimate the impact of CSR on beta using both OLS and IV regressions.

In the next prediction, we emphasize the aspect of the model that relates to the degree of substitutability across goods, which is used to construct our model of customer loyalty (Proposition 6). We use measures of product and industry differentiation and assume that greater differentiation is a proxy for lower elasticity of substitution.

Prediction 2 Firm-level CSR is associated with lower firm-level systematic risk, particularly in industries with greater product differentiation.

While our model predictions build on the notion of customer loyalty, we do not differentiate between consumer industries and business-to-business industries in testing our model because consumers are aware of firms’ supply chains, which creates an incentive for firms in other industries to also engage in CSR. That is, consumers demand better CSR policies from the firms they buy from and from the firms that supply to these firms. For example, according to Fortune magazine (“Apple does a 180 with suppliers in China”, June 7, 2013), Apple has become one of the most environmentally friendly IT-companies in China and demanding similar policies from its key suppliers. This distinguishing feature of CSR is likely to be critical to identify its effects vis-à-vis other ways that firms use to acquire customer loyalty, such as advertising.
The third main model prediction is also obtained from Proposition 6. Strictly speaking, the proposition says that the CSR-risk relation is weaker in industries where the expenditure share of CSR goods is higher. Intuitively, if consumers spend more on CSR goods, then CSR firms capture a greater market share and have initially higher profit margins. This in turn leads more firms to adopt CSR policies, attracting firms with higher adoption costs. These higher adoption costs increase the sensitivity of firm profits to aggregate shocks and the firm’s systematic risk. This prediction captures the idea of decreasing returns to CSR in an industry. In the absence of data on CSR expenditure shares, we restate the result in Proposition 6 in terms of the stock market capitalization of the higher-rated CSR firms. In the model, industries with higher CSR expenditure shares have higher relative market capitalization for CSR firms. Thus,

Prediction 3 Firm-level CSR is associated with lower firm-level systematic risk, but the effect is weaker in industries with higher relative market capitalization of CSR firms.

The next prediction is obtained from Proposition 3. Formally:

Prediction 4 The ratio of CSR firm profits to non-CSR firm profits is counter-cyclical.

It is interesting to contrast this prediction with the prediction from the alternative view that CSR goods are superior goods. Under this alternative view, CSR firms would be riskier because their profits co-move more with the business cycle than non-CSR firms’ profits.

The last prediction is about the valuations of CSR versus non-CSR firms. In equilibrium $Q_P = Q^*_G$, so that firm values are equal for the marginal CSR firm and all non-CSR firms. Recall that the value of the marginal CSR firm is $Q^*_G = E (m \pi_G) - f^*_G$. Because infra-marginal CSR firms have lower fixed costs of adopting the CSR technology, the net benefits of CSR adoption are higher for those firms. Thus firm values have to be higher for the infra-marginal firms, i.e. $Q_{Gi} = E (m \pi_G) - f_{Gi} \geq Q^*_G = Q_P$. Therefore,
Prediction 5 Firm-level CSR is associated with higher firm value.

In addition to these predictions, we predict that excess stock returns are related to CSR. Since our model is a single-factor, risk-based asset-pricing model, higher CSR is related to lower expected excess returns. We provide evidence on the relation between expected excess stock returns and CSR in an online appendix. The model also predicts that operating profits of CSR firms are lower than operating profits of non-CSR firms, i.e. \(\pi_G < \pi_P \) if and only if \(\alpha < \bar{\alpha} \), consistent with the evidence in Di Giuli and Kostovetsky (2014). It is important to note that while operating profits are lower for CSR firms, net profits are larger, i.e. \(\pi_G - f_G (1 + r) > \pi_P - f_P (1 + r) \), when \(\alpha < \bar{\alpha} \). The model generates also other predictions, but current data limits our ability to test them. For example, when \(\eta_G < \eta_P \), which can be interpreted as CSR firms having more loyal employees, the relative price of CSR goods to non-CSR goods increases in expansions (Proposition 1).

5 Data Description

We obtain firm-level CSR data from 2003 to 2011 from the MSCI’s ESG (Environmental, Social and Governance) database, formerly known as KLD Research & Analytics.\(^{12}\) ESG ratings aim to identify social and environmental risk factors that may affect a firm’s financial performance and its risk management. A detailed description of the data is provided in Table A.I in the Appendix. Firms are rated on a variety of strengths and concerns on seven attributes: community, diversity, employee relations, environment, product, human rights, and governance.

We compute a firm-level score as the difference between the strengths and concerns on each attribute and define seven corresponding variables. Following Hillman and Keim (2001), we construct a CSR score by adding the scores of the individual attributes. We

\(^{12}\) MSCI ESG coverage for years prior to 2003 is reduced to about 1,100 firms in 2001 and 2002, and to 650 firms from 1991 to 2001.
exclude governance from the aggregate CSR score to focus on non-governance aspects of CSR. Our results remain robust if governance is included in the CSR score. In addition to rating firms on the various CSR attributes, MSCI identifies six “sin” controversial business issues: firearms, gambling, military, nuclear, tobacco, and alcohol. We use a sin dummy to account for the effect of “sin” stocks on firm risk (Hong and Kacperczyk, 2009).

Panel A of Table I reports summary statistics for each of the CSR attributes and also for the aggregate CSR score. The CSR score displays greater variance than the sum of the variances of the individual attributes, because the individual attributes are positively correlated. Panel B of Table I reports the distribution of companies covered by the CSR score over time and a breakdown by year of the mean value of the scores in each attribute. For every year, the data contain about 2,600 publicly listed U.S. companies. In total, the sample has 23,803 firm-year observations from 4,462 distinct companies.

![Insert Table I here](image)

We match social responsibility data with Compustat using CUSIPs as firm identifiers. We manually check stock ticker and company name for accuracy. Panel C of Table I reports the number of firms and average CSR score per industry. We report in the table the statistics by one-digit SIC code and report here the top and bottom CSR industries by two-digit SIC code. The industries with highest CSR are Hotels (SIC = 70) with a score of 0.981 and Credit Institutions (SIC = 61) with a score of 0.804. The industries with lowest CSR are Coal Mining (SIC = 12) with a score of -3.309 and Petroleum Refining (SIC = 29) with a score of -2.413.

Table II reports pairwise correlation coefficients between the aggregate CSR score, its various attributes, and the sin dummy variable. Most CSR attributes are positively correlated with other attributes except for the product and human attributes that are negatively correlated.
correlated with the attributes community and diversity, reflecting the many facets of CSR. The product attribute covers such things as antitrust and access to capital and the human attribute covers concerns about business dealings in countries with poor human rights records. The sin dummy is negatively correlated with the CSR score and with each of the CSR attributes, except for diversity. This is somewhat surprising as we expect these firms to compensate for their controversial business issues by building up other aspects of CSR. At the same time it highlights the importance of controlling for the sin dummy.

[Insert Table II and Figure 1 here]

To illustrate the time series variation of the CSR score by firm, Figure 1 plots the histogram of the standard deviation of the time series of firm-level CSR. For the purpose of this figure only, we exclude the firms with fewer than three years of CSR data, resulting in a sample of 3,264 unique firms. In this subsample, there are 430 firms (about 13%) that have a zero standard deviation. Of these, only 30 firms are in our data for the entire sample period.14 So while there are firms that see no change in CSR during the sample, the histogram shows that a significant fraction of firms experience changes in CSR that are several standard deviations larger than the regular change (average standard deviation is 0.95).

We match these data with stock return data from CRSP in order to obtain an estimate of systematic risk. To construct an estimate of systematic risk that better proxies for our model's main variable, we run a market model regression that accounts for known empirical asset pricing regularities: the Fama-French factors and a correction for short-run autocorrelation in market returns (e.g., Scholes and Williams, 1977). Our estimate of

14For example, NIC, Inc., is a fairly large company that processes federal and state government payments. It is present in our sample for all nine years of data and always displays a CSR score of “-1”. This score comes from one concern on the diversity attribute regarding the lack of women representation in senior management.
systematic risk, β_{it}, is obtained by running the following time-series regression for every stock i in year t using weekly data:

$$r_{i,s} - r_s = h_i + \beta_{i1}^1 (r_{M,s} - r_s) + \beta_{i1}^2 (r_{M,s-1} - r_{s-1}) + h_i^1 SMB_s + h_i^2 HML_s + \varepsilon_{i,s}, \quad (18)$$

where $r_{i,s}$ is the weekly return for stock i at week s, r_s is the one-month T-Bill rate at time s transformed into a weekly rate, $r_{M,s}$ is the return on the CRSP value-weighted index at time s, and SMB_s and HML_s are the Fama-French factors at time s. We adjust the estimate of β for autocorrelation in market returns by including both current and lagged excess market returns in the regression. The value of systematic risk for stock i at year t used in subsequent analysis is, $\hat{\beta}_{it} = \frac{1}{2} (\hat{\beta}_{i1}^1 + \hat{\beta}_{i1}^2).^{15}$

Table A.I in the Appendix provides a detailed description of the variables used in the analysis including all accounting variables and two variables used to describe the degree of product differentiation in an industry: Differentiated goods industries dummy (24% of the sample) from Giannetti et al. (2011) and Hoberg and Phillips product similarity, a firm-level variable that is inversely related to product differentiation, from Hoberg and Phillips (2013). Table III provides summary statistics. All of the variables (except for the CSR score) are winsorized at the 1% and 99% levels. The results are robust if an alternative outlier detection methods is used, such as Cook’s D statistic.

[Insert Table III here]

6 Empirical Results

6.1 Empirical Strategy

To explain variation in firm β due to CSR, we control for firm and year fixed effects as well as other variables known to be associated with firm systematic risk. Leverage (long

15In an online appendix we also report a full set of results when β is the coefficient on the contemporaneous market excess return, β_{i1}^1, and also when β is estimated using Equation (18) without the FF factors. Our results remain qualitatively the same in either case.
term debt to assets), sales growth, size (log of assets), market equity (ME, market equity divided by total assets), earnings variability, and the dividend yield have been shown to affect systematic risk by Beaver et al. (1970). McAlister et al. (2007) show that R&D expenditures and firm age have an impact on systematic risk. Melicher and Rush (1973) show that conglomerate firms have higher βs than stand-alone firms. Palazzo (2012) shows that firms with higher levels of cash holdings display higher systematic risk. Novy-Marx (2011) shows that operating leverage predicts cross-sectional returns. In addition, we control for profitability, advertising expenses, CAPEX and state corporate tax rate. We report two-dimensional clustered standard errors (see Petersen, 2009) in all cross-sectional tests, clustered by firms and years to adjust for arbitrary heteroskedasticity, cross-sectional, and time-series correlation.

6.2 Results

To test Prediction 1, we examine how CSR and its attributes are related to firm systematic risk. Table IV reports panel regressions where we control for firm-level variables as well as firm and year fixed effects. Of the various controls, we highlight the inclusion of Advertising expenditures that also may increase customer loyalty. If customer loyalty originated only through advertising, then we would not expect CSR to be related to risk. Likewise, if customer loyalty arises because of loyalty to the firm’s technology (e.g., Apple or Microsoft), then controlling for R&D, CAPEX and Sales growth should help capture this additional channel. Specification 1 shows the results with control variables only. The control variables mostly display the expected signs: Profitability, Leverage, Cash, ME, Dividend yield, and Diversification are positively related to systematic risk, whereas R&D is associated with lower systematic risk. The other controls, including Advertising expenditures, Operating leverage, and State tax are not significant across specifications.

16 The online appendix reports results of a similar set of regressions that exclude the control variables.
In the remaining specifications of Table IV, we include CSR together with the controls. Specification 2 shows that the level of systematic risk is statistically significantly lower for firms with higher CSR scores (coefficient of -0.0159 with t-statistic of -6.59). Economically, this association is significant as well: an increase in CSR of one standard deviation of the sample CSR (equal to 2.162 from Table III) reduces β by $0.0159 \times 2.162 = 0.034$, which is close to a 4% decrease relative to the sample mean of systematic risk of 0.914 (from Table III). Community, diversity, employee, environment and human attributes of CSR, when entered separately, also are negatively and statistically significantly linked to firm β. While the effect of CSR is not driven by any single attribute, diversity and environment have the strongest association with systematic risk. A one standard deviation increase in each of these attributes decreases β by $0.0192 \times 1.377 = 0.026$ and $0.034 \times 0.715 = 0.024$, respectively. The governance attribute of CSR in MSCI’s ESG is not related to β (specification 9), and the significance of CSR is preserved if the CSR score incorporates the governance component (specification 10). Finally, firm CSR remains significant if the sin dummy is controlled for (specification 11). Note that the R^2 of the regressions does not change noticeably from one specification to another because firm fixed effects absorb most of variation in β.

One potential alternative explanation for our finding is that firms spend more on CSR in economic expansions (as in the agency view of CSR that we return to below) when risk tends to be lower. While we note that the effect of economic expansions on β should be captured

17 ESG’s governance attribute differs from traditional governance metrics. For example, it does not contain information on the firm’s anti-takeover provisions. Instead, it contains information on activities that are not typically included in governance metrics, such as equity stakes in other firms having social concerns, or information about the firm’s transparency record concerning its political involvement. Parigi et al. (2013) show that for traditional corporate governance metrics there is a positive relation between the level of corporate governance and systematic risk.

18 We have also conducted the regressions in Table IV with CSR strengths and CSR concerns entering separately as independent variables. We find that the coefficient on CSR strengths is estimated to be negative and significant, as expected. The coefficient on CSR concerns is positive, as expected, but marginally significant.
by the year fixed effects, we further examine how the relation between firm systematic risk and CSR changes through time. The results are reported in the online appendix. Repeating our analysis by year, we find that firms with higher CSR have significantly lower \(\beta \)s in most years in the sample, with uniformly high \(t \)-statistics, implying that our results are not unique to economic expansions. In fact, the years 2003 and 2009, when there is no association between CSR and \(\beta \), coincide with strong stock market recoveries.

To test Prediction 2 of whether firm-level CSR is more negatively related with firm systematic risk in industries with greater product differentiation, we interact firm CSR with the Differentiated goods industry dummy and the Hoberg-Phillips product similarity variable (specifications 1 and 2 of Table V, respectively). In both specifications, the coefficients on the interaction terms have the predicted signs and are statistically significant. The coefficient (in absolute value) of CSR on firm risk goes up from 0.0170 when the Differentiated goods industries dummy is zero to 0.0236 when the firm belongs to a differentiated goods industry, an increase in economic significance of 38%. Likewise, the coefficient (in absolute value) of CSR on firm risk goes up from 0.0152 (equal to \(0.022 - 0.0882 \times 0.0773 \)) for a firm with mean product similarity of 0.0773 (see Table III) to 0.022 for a firm with zero product similarity, an increase in economic significance of 44%.

Prediction 3 states that firm-level CSR is associated with lower firm-level systematic risk, but the effect is weaker in industries with higher Industry top-CSR market cap (defined at the two-digit SIC industry as the market capitalization of the top-third CSR firms relative to the industry’s market capitalization). We find that firm CSR remains negative and significant with the coefficient of \(-0.0192\) and \(t \)-statistic of \(-4.53\) and that the coefficient of the interaction between Industry top-CSR market cap and firm CSR score is positive and significant, as expected.

Prediction 4 states that the ratio of CSR firm profits relative to non-CSR firm profits is counter-cyclical. To test this prediction, we construct, for each industry and for each
year, the mean net income of the firms in the top-third CSR score divided by the mean net income of the firms in the bottom-third CSR score, called *Profit ratio*. Specification 4 in Table V shows that the relation between *Profit ratio* and GDP growth expressed in 2003 dollars (as a proxy for economic cycles) is negative (coefficient of -0.122) and statistically significant, as predicted.\(^{19}\)

[Insert Table V here]

6.3 Endogeneity in the CSR-Risk Relation

One concern with our analysis, and in fact with most other studies of CSR, is that of endogeneity. Consider the following possible mechanisms for reverse causality in the CSR-risk relation. Hong et al. (2012) present evidence showing that financially constrained firms are less likely to spend resources on CSR and that when these firms’ financial constraints are relaxed spending on CSR increases consistent with the slack hypothesis of Waddock and Graves (1997).\(^{20}\) Extending the slack hypothesis, it may be that firms with low levels of systematic risk have higher valuations and more resources to spend in CSR, or have fewer growth options and again more resources to dedicate to CSR. In addition, it may be that firms that traditionally build customer loyalty through advertising, and thus have lower systematic risk, also invest more in CSR. Finally, firms with low level of systematic risk or higher valuation may even have certain management styles, cater to certain groups of investors, or be in industries that are more prone to developing more intensive CSR policies.

To alleviate these concerns, we proceed in two ways. First, we control for a long list of lagged variables that capture some of the above mentioned effects. For example, when we control for *Cash*, *CAPEX* and *R&D* we partially control for the slack hypothesis. When we

\(^{19}\)The regressions include industry fixed effects. Using median net income produces similar result. Further, the results are not changed if we detrend growth in GDP.

\(^{20}\)Note, however, that causation may go the other way around: CSR activities may relax financing constraints (see Cheng et al., 2014).
control for Advertising and R&D, we control for the other types of investment in customer loyalty. Finally, firm fixed effects capture a great deal of unobserved firm characteristics that can be correlated with the error term and result in endogeneity.

Second, we deal with endogeneity by creating two novel sets of instruments for CSR. The first set of instruments follows Di Giuli and Kostovetsky (2014) who find that firms headquartered in Democratic party-leaning states are more likely to spend resources on CSR.\footnote{In addition, Gromet et al. (2013) demonstrate that more politically conservative individuals are less in favor of investment in energy efficient technology than are those who are more politically liberal. See also Costa and Kahn (2013).} Appendix A.I gives the details of the variables we use: President vote, democrats is the proportion of votes in the state received by the Democratic candidate for president; Congress, democrat captures House and Senate Democratic representation from each state; and State government, democrats captures state chambers’ representation by Democrats.\footnote{We use Compustat data for the location of firms’ headquarters (or actual firm 10K reports when information is missing). It can be argued that firms may change their headquarter location in response to changes in a state’s political attitude. In our sample, we did not find a significant number of companies that changed the location of their headquarters. Our results are also robust if we keep only companies headquartered in the state for more than 20 years.}

We expect that the political inclination of a state is unrelated to systematic risk. Political inclination of a state could be related to the geographic clustering of industries (see Almazan et al., 2010), and thus indirectly to firm systematic risk. However, since we include firm fixed-effects in our first-stage regression, and industry effects are captured by the firm fixed-effects, geographic clustering of industries should not be a concern. Also, the state of headquarters could be related with state wealth inequality or other state-level variables that drive consumer behavior and in turn these variables could be related with firm systematic risk. To address this issue we run our tests for the full sample and for a sample that excludes geographically focused firms, so that the firms in the restricted sample are not overexposed to the demand conditions of the state where they are headquartered. To identify geographically focused firms, we follow Garcia and Norli (2012) and Colak, Durnev, and Qian (2014) and count the number of times a firm mentions the state where it is headquartered and count the number of times a firm mentions the state where it is its headquartered and
other states in four sections of its first electronically available 10-K annual report: “Item 1, Business,” “Item 2: Properties,” “Item 6: Consolidated Financial Data,” and “Item 7: Management’s Discussion and Analysis.” A firm is defined as geographically focused, if it mentions the state where it is headquartered more than 50% of times relative to other states. In our sample 44% of firms are geographically focused.

The second set of instruments is based on an hand-collected sample. The first variable, *Industry disasters*, contains information on environmental and engineering disasters. The second variable, *Product recalls*, contains information on company product recalls. Disasters are largely unexpected and we adjust them for how important they are based on the number of deaths caused. Product recalls are also often unexpected and we weight them by the media coverage during the five days subsequent to the announcement of the recall (see Appendix A.I for details). We argue that these are good instruments for CSR because consumers’ concerns related to CSR are likely to increase following disasters or product recalls. If consumers become more concerned about the CSR performance after disasters or recalls, the whole industry and its CSR activities may face increased scrutiny that may lead to lower CSR scores for the whole industry. Consistent with this argument, Kini et al. (2013) provide evidence that recalls impose significant spillover costs to the other firms in the same industry, besides the directly afflicted firm. We exclude from our analysis the firms that suffered the industry disaster or product recall because their CSR score mechanically decreases after the respective event. Finally, while we expect that the likelihood of these events may increase idiosyncratic risk, they should not affect systematic risk.

Table VI reports the results of the IV estimation. We discuss first the results with the political instruments in columns 1 and 2 for the full sample. Column 1 displays the first stage, and column 2 displays the second stage for the β regressions. In the first stage, we regress firm CSR on the instruments and all the control variables. As expected, firms

\footnote{Our results are robust if do not apply any weighting scheme for the accidents.}
headquartered in more Democratic-leaning states have higher CSR scores (the first and the third instruments are positive and significant). In the second stage, we use the fitted values of CSR as an independent regressor to explain firm systematic risk. In column 2, the magnitude of the coefficient associated with CSR (-0.1302) implies a reduction of 0.083 in β for one standard deviation increase in instrumented CSR (0.640, untabulated), which is double the effect in the OLS regression in Table IV. The results in columns 3 and 4 when we exclude the geographically focused firms are even stronger. The coefficient for the instrumented CSR is -0.1551, implying a reduction of 0.100 in β for one standard deviation increase in instrumented CSR (0.647, untabulated). If higher average incomes or more generous social welfare programs in Democratic-leaning states lead to lower βs, then we wouldn’t observe stronger effects for firms that have more geographically dispersed sales. On the contrary, we would observe significantly weaker results for the restricted sample.

[Insert Table VI here]

Column 5 reports the first-stage regression results using the disasters/product recalls instruments. As predicted, we observe a negative and statistically significant relation. The second-stage regression for firm risk is presented in column 6. The regression coefficient on the instrumented CSR variable remains negative and significant (-0.1657 with t-statistic of -3.90). This coefficient leads to a decrease in β of 0.086 for an increase in instrumented CSR of one standard deviation of 0.52 (untabulated), an effect that is double that of the OLS estimate in Table IV.

We run two specification tests reported in the last rows of Table VI. First, we run a test on the joint significance of the excluded instruments. The first-stage regression of CSR on the political instruments and other exogenous variables produces an F-statistic of joint significance of the excluded instruments of 23.488 with a p-value of 0.00, indicating that the excluded, political instruments are relevant (and similarly for the restricted sample). The
specification test on the industry disaster and product recall instruments cannot reject that they are relevant (F-statistic of 26.220 with a p-value of 0.00). Second, we run Hansen’s (1982) test of overidentifying restrictions that tests for the exogeneity of the instruments. To perform the test, we first collect IV regression residuals and then use them as dependent variables in regressions with the instruments and control variables. The test results reveal that the independent variables are jointly insignificant with p-values greater than 0.10 in all cases and that the instruments can be treated as exogenous. We conclude that the instruments are relevant and that our results survive the endogeneity concerns.

6.4 Firm Value and CSR

Table VII presents the results of the tests of Prediction 5 using OLS that firm-level CSR is associated with higher firm valuation as measured by Tobin’s Q. We find that the association between CSR score and Tobin’s Q is positive and significant (coefficient of 0.0599 and t-statistic of 8.22), consistent with Prediction 5 (specification 1). We also find in specifications 2 and 3 that CSR is more strongly related to Tobin’s Q in industries with greater product differentiation, consistent with the model (coefficient of CSR interacted with Differentiated goods industry dummy is 0.0249 with t-statistic of 3.17 and coefficient of CSR interacted with Hoberg-Phillips product similarity variable is -0.0817 with t-statistic of -2.30).

Specification 4 shows that association with CSR and Tobin’s Q is weaker if a firm belongs to an industry where top-CSR firms have relatively larger market capitalization, also consistent with the model (coefficient on the interaction term is -0.0086 with t-statistic of -1.92).

[Insert Tables VII and VIII here]

24 We find that the coefficient on the Differentiated goods industries dummy is negative. Differentiated goods industries spend more money on advertising and R&D and those have a positive effect on valuation, so while the marginal effect of differentiation might be negative, the total effect of differentiation may still be positive.
Table VIII presents the IV estimation of firm value on CSR. To conduct this test we use only the set of political instruments because the Industry disasters/Product recalls instruments are likely to affect idiosyncratic volatility and hence firm value. We believe that our political instruments are exogenous especially when considered in the restricted sample of geographically focused firms. Note also that if democratic states have higher taxes as shown by Heider and Ljungqvist (2014), our political instruments may be correlated with firm value. However, according to Di Giuli and Kostovetsky (2014), firms do more CSR in democratic states, which then should lead to higher firm value, not lower firm value as should be the case according to the tax story. Nonetheless, our regressions include state taxes to account for any omitted correlation. The results in Table VIII show that instrumented CSR has a positive and significant effect over firm value as predicted by the theory (the Table repeats the first stage regressions from Table VI).

7 Conclusion

This paper studies a mechanism through which CSR policies affect firms’ systematic risk based on the premise that CSR is an investment in customer loyalty. Our theory and evidence point to consumers being important agents in influencing firm policies and their risk profiles, in line with recent CEO survey evidence showing that consumers are more important than investors in determining firms’ CSR policies. This paper thus fills a gap in the literature by formalizing a channel through which CSR policies affect firm systematic risk and returns. The paper also contributes to the literature by offering an instrumental variables estimation that tries to deal with potential endogeneity of CSR.

Modeling consumers that are heterogenous in wealth and where CSR goods are superior

Similarly, it may be argued that technology firms with high growth options have low firm risk and are also more likely to both invest in CSR and to locate in Silicon Valley or in Boston, which are in traditionally democratic states. However, this argument goes against the evidence in Campbell and Vulteenaho (2004) that suggests that high growth options firms have high firm beta. In the online appendix we document the robustness of our results in a sample without firms headquartered in Massachusetts and California.
goods is a potential avenue for extending our CSR model. We believe that such a model
would offer similar predictions to our current model, if wealthy consumers, who buy the
superior CSR goods, have also more stable demands across the business cycle. Moreover,
we recognize that not all CSR activities are geared towards customer loyalty. In a richer
model, it would be interesting to study the relationship between CSR and employee loyalty
and the implications of that relationship.

Our results have practical capital budgeting, portfolio selection and policy implications.
Beta is the major parameter used in estimating the cost of equity. Given our results on beta,
CSR companies have lower cost of equity than non-CSR firms. Also, the choice of securities
to include in a portfolio relies partly on the degree to which the securities co-move with
the market. Including CSR stocks would have the effect of lowering the overall riskiness
of the portfolio. In addition, projects that increase firms’ reputation for CSR should be
discounted with lower cost of equity, compared to otherwise similar projects. However, our
theory cautions that the benefits from investing in CSR are tied to the proportion of firms
already doing CSR relative to the total demand for CSR. Thus we do not wish to claim
that investing in CSR is in the best interest of all firms or at all times.
Appendix
The Appendix contains proofs of the propositions in the paper.

A Proofs

Proof of Proposition 1. Consider the date-2 investor optimization problem:

$$\max_{c_i} \frac{C_2^{1-\gamma}}{1-\gamma},$$

subject to the budget constraint,

$$W_2 = \int_0^1 p_i c_i di. \tag{A.1}$$

Letting λ_2 be the Lagrange multiplier associated with equation (A.1). The first order sufficient and necessary conditions for an interior solution are equations (A.1) and

$$\alpha C_2^{-\gamma} \left(\int_0^\mu c_i^{\sigma_G} di \right) \frac{\alpha}{\sigma_G - 1} \left(\int_\mu^1 c_i^{\sigma_P} di \right) \frac{1-\alpha}{\sigma_P - 1} c_i^{\sigma_G - 1} = \lambda_2 p_l, \quad \text{all } 0 \leq l \leq \mu, \tag{A.2}$$

$$(1-\alpha) C_2^{-\gamma} \left(\int_0^\mu c_i^{\sigma_G} di \right) \frac{\alpha}{\sigma_G} \left(\int_\mu^1 c_j^{\sigma_P} dj \right) \frac{1-\alpha}{\sigma_P - 1} c_j^{\sigma_P - 1} = \lambda_2 p_k, \quad \text{all } \mu \leq k \leq 1. \tag{A.3}$$

Multiplying both sides of the equations above by the respective consumption level and integrating over the relevant range gives

$$\alpha C_2^{1-\gamma} = \lambda_2 \int_0^\mu p_i c_i di,$$

$$(1-\alpha) C_2^{1-\gamma} = \lambda_2 \int_\mu^1 p_j c_j dj.$$

Eliminating λ_2 we see that α is the expenditure share of CSR goods:

$$\int_0^\mu p_i c_i di = \frac{\alpha}{1-\alpha} \int_\mu^1 p_j c_j dj.$$

Also, $C_2^{1-\gamma} = \lambda_2 W_2$. Take the ratio of two conditions for $0 \leq i, l \leq \mu$ to get

$$c_i = \left(\frac{p_i}{p_l} \right)^{\frac{1}{\sigma_G - 1}} c_l, \tag{A.2}$$

and the ratio of two conditions for $\mu \leq j, k \leq 1$ to get

$$c_j = \left(\frac{p_j}{p_k} \right)^{\frac{1}{\sigma_P - 1}} c_k. \tag{A.3}$$
Replacing (A.2) and (A.3) back in the first order conditions

\[\alpha C^{-\gamma} \left(\int_0^\mu p_i^{\sigma_G^{-1}} di \right) \frac{\sigma_G}{1-\gamma} \left(\int_\mu^1 p_i^{\sigma_P^{-1}} p_l^{\sigma_G^{-1}} \right) \frac{1-\alpha}{1-\gamma} p_l^{\sigma_G^{-1}} c_l^{1-\gamma} c_k^{\gamma} = \lambda_2, \]

\[(1-\alpha) C^{-\gamma} \left(\int_0^\mu p_i^{\sigma_G^{-1}} di \right) \frac{\sigma_G}{1-\gamma} \left(\int_\mu^1 p_j^{\sigma_P^{-1}} dj \right) \frac{1-\alpha-\gamma}{1-\gamma} p_l^{\sigma_G^{-1}} c_l^{1-\gamma} = \lambda_2. \]

The ratio of these two equations yields:

\[\frac{\alpha \left(\int_\mu^1 p_i^{\sigma_P^{-1}} \right) p_l^{\sigma_G^{-1}}}{(1-\alpha) \left(\int_0^\mu p_i^{\sigma_G^{-1}} di \right) p_l^{\sigma_G^{-1}}} c_k = c_l. \]

Replacing all in the budget constraint:

\[W_2 = \int p_l c_l = \int p_i c_i = \int_0^\mu p_i \left(\frac{p_k}{p_l} \right)^{\sigma_G^{-1}} c_l di + \int_\mu^1 p_j \left(\frac{p_j}{p_k} \right)^{\sigma_P^{-1}} c_k dj = \frac{1}{1-\alpha} \left(\int_\mu^1 p_i^{\sigma_P^{-1}} \right) \frac{c_k}{p_k^{\sigma_P^{-1}}}, \]

from which we get the demand functions:

\[c_k = (1-\alpha) \frac{p_k^{\sigma_P^{-1}}}{\int_\mu^1 p_i^{\sigma_P^{-1}} di} W_2, \]

and

\[c_l = \alpha \frac{p_l^{\sigma_G^{-1}}}{\int_0^\mu p_i^{\sigma_G^{-1}} di} W_2. \]

Turn now to the firms’ problems. Using the demand functions from the investor’s problem, the first order necessary and sufficient conditions for firms are:

\[\sigma_G p_j x_j = w A^{\eta G} \kappa_G x_j \]

\[\sigma_P p_k x_k = w A^{\eta P} \kappa_P x_k, \]

so that profits are

\[\pi_j = (1-\sigma_j) p_j x_j. \]

By Walras’ law, the equilibrium requires a price normalization. We normalize prices such that the price level of the aggregate consumption good equals 1. Define

\[P = \min_{c_l \in \{c_l: C=1\}} \int_0^1 p_l c_l dl. \]

37
It can be shown that the solution yields
\[
P = \alpha^{-\alpha} (1 - \alpha)^{-(1-\alpha)} \left(\int_0^\mu p_i \frac{\sigma G}{\mu G} \, di \right)^{-1-\frac{1}{\sigma G}} \left(\int_1^\mu p_k \frac{\sigma P}{\mu P} \, dk \right)^{-(1-\alpha)\frac{1}{\sigma P}}.
\]

If \(P = 1 \), and setting \(p_k = p_P \) for all \(k \in [\mu, 1] \) and \(p_l = p_G \) for all \(l \in [0, \mu] \), then
\[
p_P = \left(\alpha \mu \frac{1}{\sigma G} \right)^\alpha \left((1 - \alpha)(1 - \mu) \frac{1}{\sigma P} \right)^{1-\alpha} \left(\frac{p_G}{p_P} \right)^{-(1-\alpha)}.
\]

From the firms’ problem
\[
\frac{p_P}{p_G} = \frac{\sigma G}{\sigma P} A^{\eta P} \kappa_P,
\]
and we arrive at
\[
p_P = \tilde{p} A^{-\alpha(\eta_G - \eta_P)}, \quad p_G = \frac{\sigma P \kappa_G}{\sigma G \kappa_P} \tilde{p} A^{(1-\alpha)(\eta_G - \eta_P)},
\]
where
\[
\tilde{p} = \left(\alpha \mu \frac{1}{\sigma G} \right)^\alpha \left((1 - \alpha)(1 - \mu) \frac{1}{\sigma P} \right)^{1-\alpha} \left(\frac{\sigma P \kappa_G}{\sigma G \kappa_P} \right)^{-(1-\alpha)}.
\]

By construction this solution obeys \(P = 1 \).

Now we solve the labor market clearing condition. From the investor’s problem:
\[
c_G = \frac{\alpha (1 - \mu) p_P}{(1 - \alpha) \mu p_G} c_P = \frac{\alpha (1 - \mu) \sigma G A^{\eta P} A^{\kappa_P}}{(1 - \alpha) \mu \sigma P A^{\eta G} \kappa_G} c_P.
\]

Replacing these expressions in the labor market clearing condition, \(\int_0^1 l_i \, di = L \), gives
\[
\mu A^{\eta G} \kappa_G c_G + (1 - \mu) A^{\eta P} \kappa_P c_P = L.
\]

Using equation (A.4) again:
\[
c_P = \frac{1 - \alpha}{1 - \mu} A^{-\eta_P}, \quad c_G = \frac{\bar{x} \sigma G}{\sigma P \mu \kappa_P} A^{-\eta_G},
\]
where
\[
\bar{x} = \frac{L \sigma P / \kappa_P}{\alpha \sigma G + (1 - \alpha) \sigma P}.
\]

We then use one of the first order conditions from the firms’ problem to get the wage rate,
\[
w = \tilde{p} \frac{\sigma P}{\kappa_P} A^{-\eta_G},
\]

38
where $\eta = (1 - \alpha) \eta_P + \alpha \eta_G$. Profits are

$$\pi_G = \bar{p} \bar{x} (1 - \sigma_G) \frac{\alpha}{\mu} A^{-\eta},$$

for CSR firms and

$$\pi_P = \bar{p} \bar{x} (1 - \sigma_P) \frac{1 - \alpha}{1 - \mu} A^{-\eta},$$

for non-CSR firms. Finally, under our price normalization, $C_2 = W_2$, and

$$\lambda_2 = C_2^{-\gamma} = [\bar{p} \bar{x}]^{-\gamma} A^{\gamma \bar{\eta}}.$$

\[\Box\]

Proof of Proposition 2. This proposition discusses conditions under which $\mu < f_P$, in terms of exogenous model parameters. Before we show the main result in the proposition, we show that the sign, but not the magnitude of $\mu - f_P$ is independent of any heterogeneity in κ_j and η_j. To show this, note that the expenditure shares of CSR and non-CSR goods are α and $1 - \alpha$, respectively, so that

$$\mu p_G c_G = \frac{\alpha}{1 - \alpha} (1 - \mu) p_P c_P.$$

Because operating profits are $\pi_j = (1 - \sigma_j) p_j c_j$, the difference in profits $\pi_G - \pi_P$ is proportional to

$$\Delta \equiv (1 - \sigma_G) \frac{\alpha}{\mu} - (1 - \sigma_P) \frac{1 - \alpha}{1 - \mu}. \quad (A.7)$$

Inserting this result into the equilibrium condition (15) proves that the sign of $\mu - f_P$ is given only by the sign of Δ, which is independent of any heterogeneity in κ_j and η_j. This is surprising because η_j describes the sensitivity of firm j’s labor demand to the aggregate shock (i.e., employee loyalty) and yet heterogeneity in η_j does not affect the relative proportion of CSR firms in the industry or their relative riskiness. The main reason is that with fixed expenditure shares and homogeneity of operating profits to sales revenue, the sensitivity of revenues to the productivity shock must in equilibrium be equal across types of consumption goods, i.e., it responds to $\bar{\eta}$. This result is helpful in isolating the effect of demand loyalty on systematic risk studied in this paper.

To show the main result in the proposition note that $\Delta > 0$ if, and only if,

$$\frac{(1 - \sigma_G) \alpha}{1 - \sigma_P + (\sigma_P - \sigma_G) \alpha} > \mu.$$

The left hand side of the inequality is strictly increasing in α varying between 0 and 1. Define $\bar{\alpha}$ implicitly as

$$\frac{(1 - \sigma_G) \bar{\alpha}}{1 - \sigma_P + (\sigma_P - \sigma_G) \bar{\alpha}} = f_P.$$

We can solve for $\bar{\alpha}$ to get the expression in the proposition. Let $\alpha < \bar{\alpha}$ and assume by way of contradiction that $\mu > f_P$. Then, by definition of $\bar{\alpha}$,

$$f_P > \frac{(1 - \sigma_G) \alpha}{1 - \sigma_P + (\sigma_P - \sigma_G) \alpha}. \quad (A.7)$$

39
But, \(\mu > f_P \), or equivalently, \(\Delta > 0 \), implies that the right hand side of this inequality is larger than \(\mu \), which is a contradiction. Now, let \(\mu < f_P \). Then,

\[
\frac{(1 - \sigma_G) \alpha}{1 - \sigma_P + (\sigma_P - \sigma_G) \alpha} < \mu < f_P = \frac{(1 - \sigma_G) \bar{\alpha}}{1 - \sigma_P + (\sigma_P - \sigma_G) \bar{\alpha}}.
\]

The inequalities imply \(\alpha < \bar{\alpha} \).

Proof of Proposition 3. Write \(R_\pi \) using the equilibrium values of \(\pi_j \) and noting that \(\mu = f_g^*_G \):

\[
R_\pi = \frac{(1 - \sigma_G) \frac{\alpha}{\mu} \bar{p} \bar{x} A^{-\bar{\eta}} - \mu (1 + r)}{(1 - \sigma_P) \frac{1 - \alpha}{\mu} \bar{p} \bar{x} A^{-\bar{\eta}} - f_P (1 + r)}.
\]

Before continuing, note that stock prices are

\[
Q_j = E \left[m \pi_j \right] - f_j = \bar{m} [\bar{p} \bar{x}]^{1-\gamma} (1 - \sigma_j) \frac{\alpha_j}{\mu_j} E \left[A^{-(1-\gamma)\bar{\eta}} \right] - f_j.
\]

At an interior solution the price of the marginal CSR firm obeys \(Q_g^* = Q_P \), which can be written as

\[
\bar{m} [\bar{p} \bar{x}]^{1-\gamma} E \left[A^{-(1-\gamma)\bar{\eta}} \right] \Delta = f_g^* - f_P,
\]

where we have used the definition of \(\Delta \) in equation (A.7). Now take the derivative of \(R_\pi \) with respect to \(A^{-\bar{\eta}} \):

\[
\frac{dR_\pi}{dA^{-\bar{\eta}}} = (1 + r) \bar{p} \bar{x} - \frac{(1 - \sigma_G) \frac{\alpha}{\mu} f_P + \mu (1 - \sigma_P) \frac{1 - \alpha}{1 - \mu}}{\left[(1 - \sigma_P) \frac{1 - \alpha}{1 - \mu} \bar{p} \bar{x} A^{-\bar{\eta}} - f_P (1 + r) \right]^2}
\]

\[
\propto - (1 - \sigma_G) \frac{\alpha}{\mu} f_P + \mu (1 - \sigma_P) \frac{1 - \alpha}{1 - \mu}
\]

\[
= (1 - \sigma_G) \frac{\alpha}{\mu} (\mu - f_P) - \mu \Delta
\]

\[
= \left\{ (1 - \sigma_G) \frac{\alpha}{\mu} \bar{m} [\bar{p} \bar{x}]^{1-\gamma} E \left[A^{-(1-\gamma)\bar{\eta}} \right] - \mu \right\} \Delta
\]

\[
= Q_g^* \Delta.
\]

The third line uses the definition of \(\Delta \) and combines the terms with \((1 - \sigma_G) \frac{\alpha}{\mu} \). The fourth line uses equation (A.9) to eliminate \(\mu - f_P \) and the last line uses the equilibrium value of \(Q_g^* \) in equation (A.8). It follows that \(\frac{dR_\pi}{dA^{-\eta}} \propto 0 \) if, and only if, \(\Delta \propto 0 \). From (A.9), and noting that \(\mu = f_g^* \) in equilibrium, then \(\Delta \propto 0 \) if and only if \(f_P - \mu \propto 0 \). From Proposition 2, \(f_P - \mu \propto 0 \) if and only if \(\bar{\alpha} \propto \alpha \).

Proof of Proposition 4. The investor’s stochastic discount factor is,

\[
m = \bar{m} [\bar{p} \bar{x}]^{-\gamma} A^{\bar{\eta}}.
\]
Thus, we have

\[
Cov(m, \pi_j) = Cov \left(\bar{m} \bar{p} \bar{x}^{-\gamma} A^{\gamma} \theta, \bar{p} \bar{x} (1 - \sigma_j) \frac{\alpha_j}{\mu_j} A^{-\theta} \right)
\]

\[
= \bar{m} \bar{p} \bar{x}^{-\gamma} (1 - \sigma_j) \frac{\alpha_j}{\mu_j} Cov \left(A^{\gamma} \theta, A^{-\theta} \right).
\]

Using equation (A.9), and substituting in the various terms, expected stock excess returns for firm \(j \) are

\[
E(r_j - r) = \frac{\bar{p} \bar{x} (1 - \sigma_j) \frac{\alpha_j}{\mu_j}}{\bar{m} \bar{p} \bar{x}^{-\gamma} (1 - \sigma_j) \frac{\alpha_j}{\mu_j} E[A^{-(1-\gamma) \theta}] - f_j} - \frac{Cov(A^{\gamma} \theta, A^{-\theta})}{E(A^{\gamma} \theta)}.
\]

For any CSR firm, the ratio of expected excess returns to that of a non-CSR firm is:

\[
\frac{E(r_G - r)}{E(r_P - r)} = \frac{(1 - \sigma_G) \frac{\alpha}{\mu}}{(1 - \sigma_P) \frac{\alpha}{\mu}} \frac{Q_P}{Q_G}.
\]

The marginal CSR firm:

\[
\frac{E(r_G^* - r)}{E(r_P - r)} = 1 + \frac{\Delta}{(1 - \sigma_P) \frac{\alpha}{\mu}}.
\]

Therefore,

\[
E(r_P - r) \geq E(r_G^* - r) \text{ if, and only if, } f_P - \mu \geq 0.
\]

From Proposition 2, \(f_P - \mu \leq 0 \) if and only if \(\hat{\alpha} \leq \alpha \). \(\blacksquare \)

Proof of Proposition 5. Recall that the gross return on firm \(i \) is defined as \(1 + r_i \equiv (\pi_i - f_i (1 + r)) / Q_i \) and that the value-weighted market return is \(1 + r_M = \int (\pi_i - f_i (1 + r)) \, di / \int Q_i \, dj \). We wish to solve for \(\beta_j = Cov(r_j, r_M) / Var(r_M) \). Consider first solving for \(Cov(r_j, r_M) \).

Because \(f_i \) and \(r \) are constants

\[
Cov(r_j, r_M) = Cov \left(\pi_j Q_j / Q_j, \int \pi_i Q_i Q_j dj / \int Q_i dj \right).
\]

Taking \(Q_j \int Q_i dj \) out of the covariance operator and substituting in for the value of \(\pi_i \) gives:

\[
Cov(r_j, r_M) = \left(\frac{\bar{p} \bar{x} (1 - \sigma_j) \frac{\alpha_j}{\mu_j}}{Q_j} \right) \frac{\int \bar{p} \bar{x} (1 - \sigma_i) \frac{\alpha_i}{\mu_i} \, di}{\int Q_j dj} \left(\frac{Q_i}{Q_j} \right) Var(A^{-\theta})
\]

Consider now solving for \(Var(r_M) \). Following similar steps as above

\[
Var(r_M) = \left(\frac{\int \bar{p} \bar{x} (1 - \sigma_i) \frac{\alpha_i}{\mu_i} \, di}{\int Q_j dj} \right)^2 \left(\frac{\int Q_j dj}{\int Q_i dj} \right)^2 \left(\int Q_i dj \right) Var(A^{-\theta})
\]

Thus,

\[
\beta_j = \frac{\bar{p} \bar{x} (1 - \sigma_j) \frac{\alpha_j}{\mu_j}}{Q_j} \left[\frac{\int \bar{p} \bar{x} (1 - \sigma_i) \frac{\alpha_i}{\mu_i} \, di}{\int Q_i dj} \right]^{-1}
\]
or solving the integral,

\[
\beta_j = \frac{(1 - \sigma_j) \alpha_j}{(1 - \sigma_G) \alpha_G + (1 - \sigma_P) \alpha_P} \int Q_i di \mu_j Q_j.
\]

For completeness, calculate total stock market value:

\[
\int Q_i di = \int_0^\mu Q_i di + (1 - \mu) Q_P = \int_0^\mu (E(m\pi_G) - f_{Gi}) di + (1 - \mu) Q_P.
\]

Note that \(\int_0^\mu f_{Gi} di = \frac{1}{2} \mu^2\) and \(E(m\pi_G) = Q_i^* + f_{Gi}^* = Q_G^* + \mu\). Therefore,

\[
\int Q_i di = Q_G^* + \frac{1}{2} \mu^2.
\]

\[\blacksquare\]

B Variable Definitions

[Insert Table A.I here]
References

This table presents the variable definitions and sources of data. Compustat and CRSP items are in brackets.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corporate Social Responsibility</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aggregate CSR</td>
<td>It is the sum of the following CSR attributes: community, diversity, employee, environment, product, and human, all defined below. It is measured annually from 2003 through 2011.</td>
<td></td>
</tr>
<tr>
<td>Community</td>
<td>It is the difference between community strengths and weaknesses. Community lists 3 concerns (investment, economic impact, and tax disputes) and 7 strengths (charitable giving, innovative giving, support for housing, support for education, non-US charitable giving, volunteer programs, and community engagement). It is measured annually from 2003 through 2011.</td>
<td></td>
</tr>
<tr>
<td>Diversity</td>
<td>It is the difference between diversity strengths and weaknesses. Diversity has 3 concerns (controversies, non-representation, and board diversity) and 8 strengths (CEO quality, promotion, board of directors, work-life benefits, women and minority contracting, employment of disabled, gay and lesbian policies, and underrepresented groups). It is measured annually from 2003 through 2011.</td>
<td></td>
</tr>
<tr>
<td>Employee</td>
<td>It is the difference between employee relations strengths and weaknesses. Employee relations has 5 concerns (union relations, health concerns, workforce reductions, retirement benefits, and supply chain) and 7 strengths (union relations, no-layoff policy, profits sharing, employee involvement, retirement benefits, health and safety, and supply chain policies). It is measured annually from 2003 through 2011.</td>
<td></td>
</tr>
<tr>
<td>Environment</td>
<td>It is the difference between environment strengths and weaknesses. Environment lists 9 concerns (waste, regulatory problems, ozone issues, emissions, agriculture chemicals, climate change, negative impact of product, biodiversity, and non-carbon releases) and 6 strengths (beneficial product, pollution prevention, recycling, clean energy, impact of property, and management system). It is measured annually from 2003 through 2011.</td>
<td>MSCI’s ESG ratings.</td>
</tr>
<tr>
<td>Product</td>
<td>It is the difference between product strengths and weaknesses. Product has 3 concerns (product safety, marketing concerns, and antitrust) and 4 strengths (quality, innovation, benefits to economically disadvantaged, and access to capital). It is measured annually from 2003 through 2011.</td>
<td></td>
</tr>
<tr>
<td>Human</td>
<td>It is the difference between human relations strengths and weaknesses. Human rights has 7 concerns (South Africa, Northern Ireland, Burma, Mexico, Sudan, labor rights, and indigenous people relations) and 3 strengths (South Africa, indigenous people relations, and labor rights strength). It is measured annually from 2003 through 2011.</td>
<td></td>
</tr>
<tr>
<td>Governance</td>
<td>It is the difference between governance strengths and weaknesses. Governance lists 7 concerns (high compensation, ownership, accounting, transparency, political accountability, public policy, and governance structure) and 5 strengths (limited compensation, ownership structure, transparency, political accountability, and public policy). It is measured annually from 2003 through 2011.</td>
<td></td>
</tr>
<tr>
<td>Sin dummy</td>
<td>This is a dummy variable that takes the value of one if a firm is involved in a controversial business issue, and zero otherwise. Controversial business issues are: firearms, gambling, military, nuclear, tobacco, and alcohol. Firearms concerns include producer of civilian arms, firearms retailer or distributor, ownership of a firearms company, ownership by a firearms company. Gambling concerns include operations, support, licensor, ownership of a gambling company, ownership by a gambling company. Military concerns include weapons systems, support systems, ownership of a military company, ownership by a military company. Nuclear concerns include builders and designers, suppliers, consulting, uranium mining, distributors, repairs. Tobacco concerns include licensor, producer, distributor, retailer, supplier, ownership of a tobacco company, ownership by a tobacco company. Alcohol concerns include producer, distributor, retailer, licensor, supplier, ownership of an alcohol company, ownership by an alcohol company. It is measured annually from 2003 through 2011.</td>
<td></td>
</tr>
<tr>
<td>Firm and Industry Variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firm β</td>
<td>It is defined as the average value of estimation coefficients on market excess return and lagged market excess return in the regression of firm weekly excess return on market excess return, lagged market excess return, and the SMB and HML Fama-French factors. Each regression contains 52 observations. It is measured annually from 2004 through 2012.</td>
<td>CRSP.</td>
</tr>
<tr>
<td>Tobin's Q</td>
<td>It is measured as the ratio of the market value of equity (fiscal year-end price [PRC_F] times number of shares outstanding [CSHO]) plus book value of debt (total assets [AT] less book value of equity [CEQ]) to total assets [AT]. It is measured annually from 2004 through 2012.</td>
<td>Compustat.</td>
</tr>
<tr>
<td>Ratio of CSR firm profits to non-CSR firm profits</td>
<td>It is measured at the two-digit SIC industry level as mean net income [IB] of the firms in the top-third CSR score divided by the mean net income of the firms in the bottom-third CSR score. It is measured annually from 2004 through 2012.</td>
<td>Compustat.</td>
</tr>
<tr>
<td>Operating leverage</td>
<td>It is measured as the sensitivity of growth in total operating costs to growth in sales. To calculate the measure, for every firm and year, we calculate ex-ante expectations of operating costs [XOPR] and sales [SALE] based on the geometric growth rate over the previous two years. Then, we generate the innovations to the growth rates. Operating leverage is -1 multiplied by the regression coefficient of the time-series regression of innovations in growth rates of operating costs on innovations in growth rates of sales. It is measured annually from 2003 through 2011.</td>
<td></td>
</tr>
<tr>
<td>Profitability</td>
<td>It is measured by RoA (return on assets), which is defined as net income [IB] over total assets [AT]. It is measured annually from 2003 through 2011.</td>
<td></td>
</tr>
<tr>
<td>R&D</td>
<td>It is defined as R&D expenditure [XRD] over total assets [AT]. It is measured annually from 2003 through 2011.</td>
<td></td>
</tr>
<tr>
<td>Advertising</td>
<td>It is defined as advertising expenditures [XAD] over total assets [AT]. It is measured annually from 2003 through 2011.</td>
<td></td>
</tr>
<tr>
<td>Leverage</td>
<td>It is defined as long-term debt [DLT] over total assets [AT]. It is measured annually from 2003 through 2011.</td>
<td></td>
</tr>
<tr>
<td>Instrumental Variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Incomes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAPEX</td>
<td>It is defined as capital expenditures [CAPX] over total assets [AT]. It is measured annually from 2003 through 2011.</td>
<td></td>
</tr>
<tr>
<td>Cash</td>
<td>It is defined as the ratio of cash and marketable securities [CHE] to total assets [AT] net of cash and marketable securities (Opler et al., 1999). It is measured annually from 2003 through 2011.</td>
<td></td>
</tr>
<tr>
<td>Sales growth</td>
<td>It is defined as annual growth in sales [SALE]. It is measured annually from 2003 through 2011.</td>
<td></td>
</tr>
<tr>
<td>ME</td>
<td>It is the ratio of market value of equity ([PRCC_F \times [CSHO]]) to total assets [AT]. It is measured annually from 2003 through 2011.</td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td>It is defined as the log of total assets [AT]. It is measured annually from 2003 through 2011.</td>
<td></td>
</tr>
<tr>
<td>Diversification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dividend yield</td>
<td>It is defined as the dividend [DVC] per share [CSHO] over fiscal year-end price [PRCC_F]. It is measured annually from 2003 through 2011.</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>It is measured as the log of the number of years since IPO. It is measured annually from 2003 through 2011.</td>
<td></td>
</tr>
<tr>
<td>Earnings variability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earnings variability</td>
<td>It is defined as the standard deviation of earnings [IB] per share [CSHO] using a five-year rolling window. It is measured annually from 2003 through 2011.</td>
<td></td>
</tr>
<tr>
<td>State tax</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State tax</td>
<td>It is defined as the highest-bracket state corporate income tax rate. State affiliation is determined by the location of firm headquarters. It is measured annually from 2003 through 2011.</td>
<td></td>
</tr>
<tr>
<td>Product recalls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differentiated good industry</td>
<td>This dummy takes the value of 1 if the firm is in industries defined in Giannetti et al. (2011) as differentiated-product industries, and zero otherwise. The differentiated-product industries are: furniture; fabric; clothing; clothing machinery; electronic equipment; transportation equipment; instruments; miscellaneous products.</td>
<td></td>
</tr>
<tr>
<td>Industry top-CSR market capitalization</td>
<td>Industry top-CSR market capitalization is defined at the two-digit SIC industry as market share [PRCC_SHROUT] of top-third CSR firms relative to industry total market share. It is measured annually from 2003 through 2011.</td>
<td></td>
</tr>
<tr>
<td>GDP growth rate</td>
<td>It is measured as GDP growth expressed in 2003 dollars. It is measured annually from 2003 through 2011.</td>
<td></td>
</tr>
<tr>
<td>Disasters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disasters</td>
<td>This variable takes the same value for all peer firms in the same two-digit SIC industry of a firm affected by a disaster in a given year. Firms directly affected by disasters are excluded from the sample. We weight each disaster by the number of deaths. Because there were no deaths in the oil and nuclear accidents, we assign a weight of one death to each of the accidents. We obtain data on environmental and engineering disasters. Except for the oil and nuclear leakages, we include only those disasters that resulted in at least one death. There is a total of 53 disasters in our sample years. The type of disasters we consider include oil spills (26), nuclear leakages (6), mine accidents (3), air carrier crashes (3), train (and other transportation) accidents (4), shipwrecks (2), structural failures (3), industrial explosions (2), fires (3), and building collapses (1). The total number of deaths is 423. To differentiate events by their impact, we weight each disaster by the number of deaths. To give an example, Comair Flight 159 (Delta Airlines) crash on August 27, 2006, resulted in 47 deaths. Therefore, 32 companies that belong to the two-digit SIC industry 45 (Transportation by air) in 2006 are assigned a weight of 47/423=0.11. Because there were no deaths in the oil and nuclear accidents, we conservatively assign the death toll in each of these events to equal one death. It is measured annually from 2002 through 2010.</td>
<td></td>
</tr>
<tr>
<td>Product recalls</td>
<td>This variable takes the same value for all peer firms in the same two-digit SIC industry of a firm that experienced a product recall in a given year. Firms with recalled products are excluded from the sample. To assign a greater weight to more important recalls, we weight each recall by the newspaper coverage over the five days after the event. Media coverage is based on hand-collected data on the number of newspaper articles from Lexis-Nexis. If more than one disaster occurs in an industry, or recall in a firm, in one year, we add the weights from each incident, respectively. We consider those recalls that were covered in at least one newspaper article. For the entire sample of 4,462 companies we identify 922 product recalls for 726 companies. To assign a greater weight to more important recalls, we weight each recall by the number of newspaper articles coverage during the five days subsequent to each event. If more than one disaster occurs in an industry, or recall in a firm, in one year, we add the weights from each incident, respectively. It is measured annually from 2002 through 2010.</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1. Distribution of Standard Deviation of Firm CSR

This figure is the histogram of standard deviation of firm time-series of aggregate social responsibility (CSR). The unit of observation is one firm. The sample years are from 2003 through 2011. The aggregate corporate social responsibility (CSR) score is the sum of six attributes: community, diversity, employee relations, environment, product, and human rights. We exclude governance from the aggregate score calculation. For this graph, we drop 1,198 firms with fewer than three years of data. The remaining number of firms is 3,264. Appendix A provides details on the attributes and aggregate CSR score.
Table I. Summary Statistics for Corporate Social Responsibility

This table presents summary statistics for social responsibility data obtained from MSCI ESG (environment, social, governance), formerly KLD Research & Analytics. The sample years are from 2003 through 2011. The aggregate corporate social responsibility (CSR) score is the sum of six attributes: community, diversity, employee relations, environment, product, and human rights. We exclude governance from the aggregate score calculation. Appendix A provides details on the attributes and aggregate CSR score. Panel A reports summary statistics for CSR attributes and aggregate CSR score. Panel B reports the means for aggregate CSR score and its attributes by year. Panel C reports summary statistics for aggregate CSR score by one-digit SIC codes.

Panel A: Corporate Social Responsibility and its attributes

<table>
<thead>
<tr>
<th>Variable</th>
<th>Firm-years (2003-2011)</th>
<th>Mean</th>
<th>Std. dev.</th>
<th>Min</th>
<th>25%</th>
<th>Median</th>
<th>75%</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSR</td>
<td>23,803</td>
<td>-0.362</td>
<td>2.162</td>
<td>-9</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>Community</td>
<td>23,803</td>
<td>0.051</td>
<td>0.486</td>
<td>-2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Diversity</td>
<td>23,803</td>
<td>-0.038</td>
<td>1.377</td>
<td>-3</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Employee</td>
<td>23,803</td>
<td>-0.193</td>
<td>0.792</td>
<td>-4</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Environment</td>
<td>23,803</td>
<td>0.009</td>
<td>0.715</td>
<td>-5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Product</td>
<td>23,803</td>
<td>-0.151</td>
<td>0.560</td>
<td>-4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Human</td>
<td>23,803</td>
<td>-0.039</td>
<td>0.228</td>
<td>-3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Governance</td>
<td>23,803</td>
<td>-0.261</td>
<td>0.747</td>
<td>-4</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Panel B: Distribution by years

<table>
<thead>
<tr>
<th>Year</th>
<th>Firm-years</th>
<th>CSR</th>
<th>Community</th>
<th>Diversity</th>
<th>Employee</th>
<th>Environment</th>
<th>Product</th>
<th>Human</th>
<th>Governance</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>2,565</td>
<td>-0.181</td>
<td>0.043</td>
<td>0.206</td>
<td>-0.163</td>
<td>-0.071</td>
<td>-0.138</td>
<td>-0.059</td>
<td>-0.005</td>
</tr>
<tr>
<td>2004</td>
<td>2,583</td>
<td>-0.362</td>
<td>0.053</td>
<td>0.170</td>
<td>-0.241</td>
<td>-0.110</td>
<td>-0.142</td>
<td>-0.092</td>
<td>-0.119</td>
</tr>
<tr>
<td>2005</td>
<td>2,599</td>
<td>-0.339</td>
<td>0.036</td>
<td>0.190</td>
<td>-0.271</td>
<td>-0.091</td>
<td>-0.164</td>
<td>-0.040</td>
<td>-0.160</td>
</tr>
<tr>
<td>2006</td>
<td>2,588</td>
<td>-0.362</td>
<td>0.039</td>
<td>0.181</td>
<td>-0.281</td>
<td>-0.086</td>
<td>-0.176</td>
<td>-0.039</td>
<td>-0.240</td>
</tr>
<tr>
<td>2007</td>
<td>2,560</td>
<td>-0.338</td>
<td>0.017</td>
<td>0.198</td>
<td>-0.241</td>
<td>-0.077</td>
<td>-0.192</td>
<td>-0.043</td>
<td>-0.257</td>
</tr>
<tr>
<td>2008</td>
<td>2,673</td>
<td>-0.332</td>
<td>0.006</td>
<td>0.176</td>
<td>-0.230</td>
<td>-0.056</td>
<td>-0.187</td>
<td>-0.041</td>
<td>-0.248</td>
</tr>
<tr>
<td>2009</td>
<td>2,712</td>
<td>-0.357</td>
<td>0.001</td>
<td>0.173</td>
<td>-0.246</td>
<td>-0.057</td>
<td>-0.189</td>
<td>-0.038</td>
<td>-0.233</td>
</tr>
<tr>
<td>2010</td>
<td>2,803</td>
<td>-0.616</td>
<td>0.120</td>
<td>-0.797</td>
<td>-0.068</td>
<td>0.278</td>
<td>-0.142</td>
<td>-0.006</td>
<td>-0.220</td>
</tr>
<tr>
<td>2011</td>
<td>2,720</td>
<td>-0.347</td>
<td>0.135</td>
<td>-0.752</td>
<td>-0.014</td>
<td>0.312</td>
<td>-0.033</td>
<td>0.006</td>
<td>-0.842</td>
</tr>
<tr>
<td>Total</td>
<td>23,803</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Panel C: Distribution by industries

<table>
<thead>
<tr>
<th>SIC code</th>
<th>Industry</th>
<th>Firm-years</th>
<th>% of sample</th>
<th>CSR mean</th>
<th>CSR std. dev.</th>
<th>CSR min</th>
<th>CSR max</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-900</td>
<td>Agriculture and Fishing</td>
<td>63</td>
<td>0.26%</td>
<td>-1.651</td>
<td>2.178</td>
<td>-8</td>
<td>3</td>
</tr>
<tr>
<td>1000-1700</td>
<td>Mining and Construction</td>
<td>1,278</td>
<td>5.37%</td>
<td>-1.409</td>
<td>1.768</td>
<td>-9</td>
<td>5</td>
</tr>
<tr>
<td>2000-2900</td>
<td>Manufacturing I</td>
<td>3,418</td>
<td>14.36%</td>
<td>-0.235</td>
<td>2.636</td>
<td>-8</td>
<td>16</td>
</tr>
<tr>
<td>3000-3900</td>
<td>Manufacturing II</td>
<td>5,658</td>
<td>23.77%</td>
<td>-0.309</td>
<td>2.269</td>
<td>-8</td>
<td>18</td>
</tr>
<tr>
<td>4000-4900</td>
<td>Transportation and Utilities</td>
<td>2,223</td>
<td>9.34%</td>
<td>-0.695</td>
<td>2.085</td>
<td>-9</td>
<td>9</td>
</tr>
<tr>
<td>5000-5900</td>
<td>Wholesale Trade and Retail Trade</td>
<td>2,201</td>
<td>9.25%</td>
<td>-0.396</td>
<td>2.088</td>
<td>-7</td>
<td>12</td>
</tr>
<tr>
<td>6000-6700</td>
<td>Finance, Insurance, and Real Estate</td>
<td>5,294</td>
<td>22.24%</td>
<td>-0.162</td>
<td>1.822</td>
<td>-6</td>
<td>14</td>
</tr>
<tr>
<td>7000-7900</td>
<td>Services I</td>
<td>2,748</td>
<td>11.54%</td>
<td>-0.107</td>
<td>2.139</td>
<td>-5</td>
<td>14</td>
</tr>
<tr>
<td>8000-8900</td>
<td>Services II</td>
<td>883</td>
<td>3.71%</td>
<td>-0.639</td>
<td>1.533</td>
<td>-5</td>
<td>9</td>
</tr>
<tr>
<td>9000-9900</td>
<td>Public Administration</td>
<td>37</td>
<td>0.16%</td>
<td>-0.405</td>
<td>3.227</td>
<td>-6</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>23,803</td>
<td>100.00%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table II. Correlation Coefficients Between CSR Attributes

This table presents correlation coefficients between aggregate CSR score, its attributes, and the sin dummy variable. The attributes are community, diversity, employee relations, environment, product, and human rights. We also include the attribute governance, which is not part of the aggregate CSR score. The sample years are from 2003 through 2011. The sin dummy variable takes the value of one if a firm has one of the sin concerns and 0 otherwise. The concern categories are: firearms, gambling, military, nuclear, tobacco, and alcohol. Appendix A provides details on the attributes, aggregate CSR score and sin dummy. The numbers in parentheses are probability levels at which the hypothesis of a zero correlation can be rejected. The superscripts *, **, *** indicate significance at the 10%, 5%, and 1% levels, respectively.

<table>
<thead>
<tr>
<th></th>
<th>Sin</th>
<th>Community</th>
<th>Diversity</th>
<th>Employee</th>
<th>Environment</th>
<th>Product</th>
<th>Human</th>
<th>Governance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community</td>
<td>-0.026***</td>
<td>(0.00)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diversity</td>
<td>0.064***</td>
<td>0.287***</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employee</td>
<td>-0.028***</td>
<td>0.113***</td>
<td>0.082***</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environment</td>
<td>-0.120***</td>
<td>0.274***</td>
<td>0.146***</td>
<td>0.100***</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td></td>
</tr>
<tr>
<td>Product</td>
<td>-0.120***</td>
<td>-0.068***</td>
<td>-0.211***</td>
<td>0.067***</td>
<td>0.082***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human</td>
<td>-0.087***</td>
<td>-0.004</td>
<td>-0.109***</td>
<td>0.056***</td>
<td>0.144***</td>
<td>0.155***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Governance</td>
<td>-0.019***</td>
<td>-0.003</td>
<td>-0.0220***</td>
<td>-0.002</td>
<td>0.075***</td>
<td>0.153***</td>
<td>0.082***</td>
<td></td>
</tr>
<tr>
<td>CSR</td>
<td>-0.055***</td>
<td>0.521***</td>
<td>0.713***</td>
<td>0.500***</td>
<td>0.558***</td>
<td>0.177***</td>
<td>0.143***</td>
<td>0.058***</td>
</tr>
</tbody>
</table>

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Table III. Summary Statistics of Main Variables

This table presents summary statistics (mean, standard deviation, minimum, 25th, 50th (median) and 75th percentiles and maximum) for the main variables. The sample is the merged set between COMPUSTAT, CRSP, and MSCI ESG (environment, social, governance) formerly KLD Research & Analytics. Appendix A provides details on the definition of the variables. The sample years are from 2004 through 2012 for Firm β and Tobin’s Q, and from 2003 through 2011 for all other variables (independent variables are lagged with respect to the dependent variables). All variables, except for aggregate CSR score, are winsorized at the 1% and 99% levels.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Firm- years</th>
<th>Mean</th>
<th>Std. dev.</th>
<th>Min</th>
<th>25%</th>
<th>Median</th>
<th>75%</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firm β</td>
<td>23,803</td>
<td>0.914</td>
<td>0.409</td>
<td>0.168</td>
<td>0.572</td>
<td>0.917</td>
<td>1.212</td>
<td>2.205</td>
</tr>
<tr>
<td>Tobin’s Q</td>
<td>23,803</td>
<td>1.927</td>
<td>1.419</td>
<td>0.524</td>
<td>1.114</td>
<td>1.442</td>
<td>2.215</td>
<td>10.020</td>
</tr>
<tr>
<td>CSR</td>
<td>23,803</td>
<td>-0.362</td>
<td>2.162</td>
<td>-9</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>Operating leverage</td>
<td>23,803</td>
<td>-0.986</td>
<td>3.694</td>
<td>-6.440</td>
<td>-0.690</td>
<td>-0.990</td>
<td>-0.280</td>
<td>4.290</td>
</tr>
<tr>
<td>Profitability</td>
<td>23,803</td>
<td>0.016</td>
<td>0.134</td>
<td>-0.699</td>
<td>0.005</td>
<td>0.032</td>
<td>0.074</td>
<td>0.267</td>
</tr>
<tr>
<td>R&D</td>
<td>23,803</td>
<td>0.035</td>
<td>0.076</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.031</td>
<td>0.455</td>
</tr>
<tr>
<td>Advertising</td>
<td>23,803</td>
<td>0.009</td>
<td>0.027</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.004</td>
<td>0.175</td>
</tr>
<tr>
<td>Leverage</td>
<td>23,803</td>
<td>0.189</td>
<td>0.202</td>
<td>0.000</td>
<td>0.010</td>
<td>0.132</td>
<td>0.301</td>
<td>0.899</td>
</tr>
<tr>
<td>CAPEX</td>
<td>23,803</td>
<td>0.041</td>
<td>0.054</td>
<td>0.000</td>
<td>0.008</td>
<td>0.024</td>
<td>0.053</td>
<td>0.307</td>
</tr>
<tr>
<td>Cash</td>
<td>23,803</td>
<td>0.482</td>
<td>1.625</td>
<td>0.000</td>
<td>0.031</td>
<td>0.100</td>
<td>0.335</td>
<td>5.474</td>
</tr>
<tr>
<td>Sales growth</td>
<td>23,803</td>
<td>0.158</td>
<td>0.483</td>
<td>-0.734</td>
<td>-0.006</td>
<td>0.086</td>
<td>0.209</td>
<td>5.462</td>
</tr>
<tr>
<td>ME</td>
<td>23,803</td>
<td>1.293</td>
<td>1.310</td>
<td>0.037</td>
<td>0.430</td>
<td>0.895</td>
<td>1.655</td>
<td>7.111</td>
</tr>
<tr>
<td>Size</td>
<td>23,803</td>
<td>7.232</td>
<td>1.703</td>
<td>3.676</td>
<td>5.996</td>
<td>7.117</td>
<td>8.286</td>
<td>11.964</td>
</tr>
<tr>
<td>Dividend yield, %</td>
<td>23,803</td>
<td>1.416</td>
<td>2.500</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>1.994</td>
<td>15.270</td>
</tr>
<tr>
<td>Age</td>
<td>23,803</td>
<td>2.303</td>
<td>0.884</td>
<td>0.000</td>
<td>1.609</td>
<td>2.302</td>
<td>2.639</td>
<td>3.912</td>
</tr>
<tr>
<td>Earnings variability</td>
<td>23,803</td>
<td>2.302</td>
<td>0.347</td>
<td>0.332</td>
<td>0.447</td>
<td>2.412</td>
<td>7.816</td>
<td>37.559</td>
</tr>
<tr>
<td>Diversification</td>
<td>23,803</td>
<td>4.260</td>
<td>0.450</td>
<td>1.000</td>
<td>2.000</td>
<td>4.000</td>
<td>5.000</td>
<td>16.000</td>
</tr>
<tr>
<td>State tax</td>
<td>23,803</td>
<td>0.068</td>
<td>0.038</td>
<td>0.000</td>
<td>0.050</td>
<td>0.071</td>
<td>0.090</td>
<td>0.120</td>
</tr>
<tr>
<td>Hoberg&Phillips product similarity</td>
<td>15,001</td>
<td>0.0773</td>
<td>0.143</td>
<td>0.010</td>
<td>0.128</td>
<td>0.216</td>
<td>0.501</td>
<td>10.001</td>
</tr>
</tbody>
</table>
Table IV. Panel Regressions of Firm β on CSR and Its Attributes with Control Variables, Firm Fixed Effects and Year Fixed Effects

This table reports the results of panel regressions of Firm β on aggregate CSR score (governance excluded), its attributes (community, diversity, employee relations, environment, product, and year) and other controls. Specification 10 includes governance in the CSR score calculation. Specification 11 controls for the sin dummy. The regressions are run using the panel of firm-year observations from 2003 through 2012. All independent variables are lagged by one year. Every regression includes firm and year fixed effects. Standard errors are clustered by firms and years to adjust for arbitrary heteroskedasticity, cross-sectional, and time-series correlation. The numbers in parentheses are t-statistics. The superscripts *, **, *** indicate significance at the 10%, 5%, and 1% levels, respectively. All variables except for CSR are winsorized at the 1% and 99% levels. Appendix A contains a detailed description of all the variables.

<table>
<thead>
<tr>
<th>Specification</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent variable</td>
<td>Firm β</td>
<td>CSR variable included in the regression</td>
<td>CSR</td>
<td>Community</td>
<td>Diversity</td>
<td>Employee</td>
<td>Environment</td>
<td>Product</td>
<td>Human</td>
<td>Governance</td>
<td>CSR (with Gov.)</td>
</tr>
<tr>
<td>lagged CSR variable</td>
<td>-0.0159***</td>
<td>-0.0323***</td>
<td>-0.0192***</td>
<td>-0.0116***</td>
<td>-0.0340***</td>
<td>0.0014</td>
<td>-0.0804***</td>
<td>0.0027</td>
<td>-0.0110***</td>
<td>-0.0154***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-6.59)</td>
<td>(-3.32)</td>
<td>(-4.25)</td>
<td>(-2.06)</td>
<td>(-5.84)</td>
<td>(0.15)</td>
<td>(-4.35)</td>
<td>(0.47)</td>
<td>(-5.47)</td>
<td>(-6.43)</td>
<td></td>
</tr>
<tr>
<td>lagged Sin dummy</td>
<td>0.0058</td>
<td>0.0041</td>
<td>0.0054</td>
<td>0.0052</td>
<td>0.0045</td>
<td>0.0044</td>
<td>0.0044</td>
<td>0.0050</td>
<td>0.0422</td>
<td>0.0049</td>
<td>0.0040</td>
</tr>
<tr>
<td></td>
<td>(0.81)</td>
<td>(0.65)</td>
<td>(0.74)</td>
<td>(0.80)</td>
<td>(0.69)</td>
<td>(0.63)</td>
<td>(0.76)</td>
<td>(0.72)</td>
<td>(0.80)</td>
<td>(0.72)</td>
<td>(0.75)</td>
</tr>
<tr>
<td>lagged Operating leverage</td>
<td>-0.2518***</td>
<td>-0.2524***</td>
<td>-0.2526***</td>
<td>-0.2549***</td>
<td>-0.2503***</td>
<td>-0.2508***</td>
<td>-0.2518***</td>
<td>-0.2524***</td>
<td>-0.2523***</td>
<td>-0.2501***</td>
<td>-0.2530***</td>
</tr>
<tr>
<td></td>
<td>(-6.51)</td>
<td>(-6.53)</td>
<td>(-6.53)</td>
<td>(-6.59)</td>
<td>(-6.47)</td>
<td>(-6.49)</td>
<td>(-6.51)</td>
<td>(-6.53)</td>
<td>(-6.52)</td>
<td>(-6.47)</td>
<td>(-6.55)</td>
</tr>
<tr>
<td>lagged profitability</td>
<td>-0.4817***</td>
<td>-0.4783***</td>
<td>-0.4695***</td>
<td>-0.4784***</td>
<td>-0.4860***</td>
<td>-0.4942***</td>
<td>-0.4863***</td>
<td>-0.4830***</td>
<td>-0.4815***</td>
<td>-0.4814***</td>
<td>-0.4916***</td>
</tr>
<tr>
<td></td>
<td>(-3.77)</td>
<td>(-3.68)</td>
<td>(-3.71)</td>
<td>(-3.69)</td>
<td>(-3.63)</td>
<td>(-3.73)</td>
<td>(-3.80)</td>
<td>(-3.81)</td>
<td>(-3.74)</td>
<td>(-3.78)</td>
<td>(-3.80)</td>
</tr>
<tr>
<td>lagged R&D</td>
<td>-0.0214</td>
<td>-0.0213</td>
<td>-0.0214</td>
<td>-0.0212</td>
<td>-0.0202</td>
<td>-0.0193</td>
<td>-0.0198</td>
<td>-0.0186</td>
<td>-0.0181</td>
<td>-0.0196</td>
<td>-0.0188</td>
</tr>
<tr>
<td></td>
<td>(-0.46)</td>
<td>(-0.44)</td>
<td>(-0.37)</td>
<td>(-0.39)</td>
<td>(-0.38)</td>
<td>(-0.36)</td>
<td>(-0.33)</td>
<td>(-0.27)</td>
<td>(-0.28)</td>
<td>(-0.26)</td>
<td>(-0.26)</td>
</tr>
<tr>
<td>lagged Leverage</td>
<td>0.2290***</td>
<td>0.2236***</td>
<td>0.2210***</td>
<td>0.2161***</td>
<td>0.2234***</td>
<td>0.2231***</td>
<td>0.2303***</td>
<td>0.2332***</td>
<td>0.2413***</td>
<td>0.2424***</td>
<td>0.2502***</td>
</tr>
<tr>
<td></td>
<td>(4.60)</td>
<td>(4.59)</td>
<td>(4.59)</td>
<td>(4.65)</td>
<td>(4.58)</td>
<td>(4.59)</td>
<td>(4.66)</td>
<td>(4.70)</td>
<td>(4.61)</td>
<td>(4.58)</td>
<td>(4.64)</td>
</tr>
<tr>
<td>lagged CAPEX</td>
<td>-0.0657</td>
<td>-0.0748</td>
<td>-0.0749</td>
<td>-0.0708</td>
<td>-0.0641</td>
<td>-0.0578</td>
<td>-0.0667</td>
<td>-0.0747</td>
<td>-0.0702</td>
<td>-0.0787</td>
<td>-0.0824</td>
</tr>
<tr>
<td></td>
<td>(-0.32)</td>
<td>(-0.30)</td>
<td>(-0.25)</td>
<td>(-0.32)</td>
<td>(-0.41)</td>
<td>(-0.49)</td>
<td>(-0.54)</td>
<td>(-0.51)</td>
<td>(-0.60)</td>
<td>(-0.54)</td>
<td>(-0.55)</td>
</tr>
<tr>
<td>lagged Cash</td>
<td>0.1900***</td>
<td>0.1915***</td>
<td>0.1926***</td>
<td>0.2017***</td>
<td>0.2035***</td>
<td>0.2011***</td>
<td>0.2104***</td>
<td>0.2094***</td>
<td>0.2174***</td>
<td>0.2176***</td>
<td>0.2236***</td>
</tr>
<tr>
<td>lagged Sales growth</td>
<td>0.0060</td>
<td>0.0067</td>
<td>0.0144</td>
<td>0.0193</td>
<td>0.0197</td>
<td>0.0090</td>
<td>0.0040</td>
<td>0.0047</td>
<td>-0.0020</td>
<td>0.0044</td>
<td>0.0047</td>
</tr>
<tr>
<td></td>
<td>(1.35)</td>
<td>(1.43)</td>
<td>(1.43)</td>
<td>(1.43)</td>
<td>(1.45)</td>
<td>(1.50)</td>
<td>(1.45)</td>
<td>(1.44)</td>
<td>(1.50)</td>
<td>(1.57)</td>
<td>(1.54)</td>
</tr>
<tr>
<td>lagged ME</td>
<td>0.0489***</td>
<td>0.0488***</td>
<td>0.0567***</td>
<td>0.0601***</td>
<td>0.0577***</td>
<td>0.0655***</td>
<td>0.0582***</td>
<td>0.0616***</td>
<td>0.0659***</td>
<td>0.0599***</td>
<td>0.0567***</td>
</tr>
</tbody>
</table>
Table IV Continued.

lagged Size	0.0075	0.0071	0.0148	0.0122	0.0175	0.0105	0.0104	0.0006	0.0067	0.0056	0.0014
lagged Dividend yield	0.3349***	0.3397***	0.3315***	0.3275***	0.3294***	0.3376***	0.3469***	0.3455***	0.3478***	0.3424***	0.3434***
(2.45)	(2.37)	(2.34)	(2.36)	(2.42)	(2.48)	(2.39)	(2.38)	(2.43)	(2.33)	(2.26)	
lagged Age	0.0082	0.0098	0.0090	0.0185	0.0266	0.0203	0.0274	0.0303	0.0373	0.0343	0.0417
(0.65)	(0.59)	(0.60)	(0.64)	(0.62)	(0.55)	(0.58)	(0.63)	(0.58)	(0.60)	(0.68)	
lagged Earnings variability	0.0138	0.0214	0.0161	0.0103	0.0140	0.0086	0.0015	0.0059	0.0019	0.0106	0.0094
(0.35)	(0.41)	(0.41)	(0.49)	(0.40)	(0.35)	(0.41)	(0.44)	(0.47)	(0.51)	(0.52)	
lagged Diversification	0.0072***	0.0083***	0.0080***	0.0069***	0.0079***	0.0097***	0.0087***	0.0094***	0.0086***	0.0087***	0.0085***
lagged State tax	0.1130	0.1085	0.1006	0.1084	0.1130	0.1114	0.1044	0.0998	0.0942	0.1010	0.0995
(1.00)	(1.04)	(1.06)	(0.98)	(0.93)	(0.98)	(0.92)	(0.83)	(0.76)	(0.78)	(0.70)	
Firm and year fixed effects	Yes										
R²	0.545	0.546	0.545	0.545	0.545	0.545	0.545	0.545	0.545	0.545	0.546
Table V. Panel Regressions of Firm β on CSR Conditional on Differentiated Goods Industry, Product Similarity, and Industry top-CSR Market Capitalization

In specifications 1-3 we report the results of panel regressions of Firm β on aggregate CSR score (governance excluded) and interactions of CSR with Differentiated goods industry dummy variable (specification 1), Hoberg and Phillips product similarity, (specification 2), and Industry Top-CSR market capitalization (specification 3). Specification 4 reports regression of Profit ratio on GDP per capita growth and two-digit SIC industry dummies. The sample years are from 2003 through 2012 (independent variables in specifications 1-4 are lagged with respect to the dependent variables). Regressions in specifications 1-3 include all control variables as in Table IV. Differentiated goods industries (24% of the sample) are taken from Giannetti et al. (2011): furniture and fixture; printing and publishing; rubber and plastic products; stone, glass, and clay products; fabricated metal products; machinery; electrical equipment; transportation equipment; instruments; miscellaneous products. Industry top-CSR market capitalization is defined at the two-digit SIC industry as market share of top-third CSR firms relative to industry total market share. Profit ratio is defined at the two-digit SIC industry as the mean net income of the firms in the top-third CSR score divided by the mean net income of the firms in the bottom-third CSR score. Appendix A provides details on the definition of the variables. Except in specification (4), standard errors are clustered by firms and years to adjust for arbitrary heteroskedasticity, cross-sectional, and time-series correlation. The numbers in parentheses are t-statistics. Superscripts *, **, *** indicate significance at the 10%, 5%, and 1% levels, respectively. All firm variables, except for CSR, are winsorized at the 1% and 99% levels.

<table>
<thead>
<tr>
<th>Specification</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent variable</td>
<td>Firm β</td>
<td>Profit ratio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lagged CSR</td>
<td>-0.0170**</td>
<td>-0.0220***</td>
<td>-0.0192***</td>
<td></td>
</tr>
</tbody>
</table>
| GDP growth | | | | -0.122***
| Differentiated goods industry dummy | 0.1308*** | | | |
| Differentiated goods × lagged CSR | -0.0066*** | | | |
| Hoberg&Phillips similar goods | | -0.2417* | | |
| Hoberg&Phillips similar goods × lagged CSR | | 0.0882*** | | |
| Industry top-CSR market cap | | | -0.0096** | |
| Industry top-CSR market cap × lagged CSR | | | 0.0072*** | |
| All control variables included | yes | yes | yes | no |
| Firm fixed effects | no | yes | yes | no |
| Industry fixed effects | no | no | no | yes |
| Year fixed effects | yes | yes | yes | no |
| Number of obs. | 23,803 | 15,001 | 23,803 | 442 |
| R^2 | 0.188 | 0.595 | 0.547 | 0.277 |
Table VI. Instrumental Variables Estimation for Firm β

This table reports the results of Instrumental Variables (IV) estimation for Firm β. The endogenous (instrumented) variable is aggregate firm CSR score. We consider two sets of instruments. The first set of instruments is based on state political environment where a company is headquartered (president vote, democrats; congress, democrats; state government, democrats). President vote, democrats is the proportion of votes received by the democratic candidate for president election. Congress, democrat is 0.5 \times proportion of representatives who are democrats. State government, democrats is 0.5 \times dummy if a governor is democrat + 0.25 \times dummy if lower Chamber is controlled by democrats + 0.25 \times dummy if upper Chamber is controlled by democrats. The second set of instruments is based on natural disasters and product recalls (at the two-digit SIC industry level). A full description of these instruments is in the Appendix. Specifications 1 and 2 are based on the full sample. In specifications 3 and 4, we exclude companies classified as geographically-focused. In specifications 5 and 6, we exclude companies directly affected by disasters and product recalls. Every regression contains all of the control variables as in Table IV including firm fixed effects and year fixed effects. Standard errors are clustered by firm and year. The numbers in parentheses below the coefficient estimates are t-statistics for first-stage regressions and z-values for second-stage regressions. The superscripts *, **, *** indicate significance at the 10%, 5%, and 1% levels, respectively. We also report the following diagnostic tests: Low p-values for the F-statistics of the weak instruments test indicate that the instruments are non-weak (or that they are relevant). The reported F-test is for instruments only. High p-values for the χ^2 stat of the Hansen exogeneity of instruments (overidentifying restrictions) test indicate that the instruments can be treated as exogenous. R2 for the second-stage regression is not reported because it has no meaning in IV estimation.

<table>
<thead>
<tr>
<th>Specification</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
<td>Full sample</td>
<td>Full sample</td>
<td>Exclude geographically focused</td>
<td>Exclude geographically focused</td>
<td>Exclude dis./recalls</td>
<td>Exclude dis./recalls</td>
</tr>
<tr>
<td>Dependent variable</td>
<td>CSR</td>
<td>Firm β</td>
<td>CSR</td>
<td>Firm β</td>
<td>CSR</td>
<td>Firm β</td>
</tr>
<tr>
<td>Instrument stage</td>
<td>First stage</td>
<td>Second stage</td>
<td>First stage</td>
<td>Second stage</td>
<td>First stage</td>
<td>Second stage</td>
</tr>
<tr>
<td>Political</td>
<td>1.086***</td>
<td>2.5224***</td>
<td>0.3203</td>
<td>0.1693</td>
<td>0.1290***</td>
<td>0.1849***</td>
</tr>
<tr>
<td>(3.21)</td>
<td>(3.00)</td>
<td>(1.32)</td>
<td>(0.89)</td>
<td>(4.41)</td>
<td>(5.88)</td>
<td></td>
</tr>
<tr>
<td>lagged Disasters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-9.4989***</td>
</tr>
<tr>
<td>lagged Product recalls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(-3.22)</td>
</tr>
<tr>
<td>lagged Instrumented CSR</td>
<td>-0.1302**</td>
<td>-0.1551***</td>
<td>-0.1657***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2.14)</td>
<td>(-4.88)</td>
<td>(-3.90)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All control variables are included</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Number of firm-years</td>
<td>23,803</td>
<td>23,803</td>
<td>13,329</td>
<td>13,329</td>
<td>22,830</td>
<td>22,830</td>
</tr>
<tr>
<td>R2</td>
<td>0.452</td>
<td>0.480</td>
<td>0.342</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weak instruments test, F-stat.</td>
<td>23.488***</td>
<td>32.390***</td>
<td>26.220***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hansen exogeneity test, χ^2 stat.</td>
<td>1.980</td>
<td>1.129</td>
<td>1.700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.21)</td>
<td>(0.37)</td>
<td>(0.26)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table VII. Panel Regressions of Tobin's Q

This table reports the results of panel regressions of Tobin's Q on aggregate CSR score (specification 1) and interactions of firm CSR with Differentiated goods industry dummy variable (specification 2), Hoberg-Phillips product similarity (specification 3), and Industry top-CSR market capitalization (specification 4). The regressions are run using the panel of firm-year observations from 2003 through 2012. Independent variables are lagged by one year. Appendix A provides details on the definition of the variables. Specifications 1, 3, and 4 include firm and year fixed effects. Standard errors are clustered by firms and years to adjust for arbitrary heteroskedasticity, cross-sectional, and time-series correlation. The numbers in parentheses are t-statistics. The upper scripts *, **, *** indicate significance at the 10%, 5%, and 1% levels, respectively. All variables except for CSR are winsorized at the 1% and 99% levels.

<table>
<thead>
<tr>
<th>Specification</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent variable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lagged CSR</td>
<td>0.0599***</td>
<td>0.0480***</td>
<td>0.0472***</td>
<td>0.0516***</td>
</tr>
<tr>
<td>Differentiated goods industry dummy</td>
<td>-0.0770**</td>
<td>(-2.14)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differentiated goods × lagged CSR</td>
<td>0.0249***</td>
<td>(3.17)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoberg & Phillips similar goods</td>
<td>0.2214***</td>
<td>(7.80)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoberg & Phillips similar goods × lagged CSR</td>
<td>-0.0817**</td>
<td>(-2.30)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industry top-CSR market cap.</td>
<td>0.0100</td>
<td>(0.74)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industry top-CSR mark cap. × lagged CSR</td>
<td>-0.0086*</td>
<td>(-1.92)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lagged Operating leverage</td>
<td>0.0037</td>
<td>0.0080</td>
<td>0.0052</td>
<td>0.0062</td>
</tr>
<tr>
<td>lagged profitability</td>
<td>0.0987**</td>
<td>0.0821**</td>
<td>0.0940**</td>
<td>0.0936**</td>
</tr>
<tr>
<td>lagged R&D</td>
<td>1.9484***</td>
<td>4.2987***</td>
<td>4.1014***</td>
<td>4.2188***</td>
</tr>
<tr>
<td>lagged Advertising</td>
<td>1.3390</td>
<td>3.0982***</td>
<td>2.6529***</td>
<td>2.8140***</td>
</tr>
<tr>
<td>lagged Leverage</td>
<td>-0.2090**</td>
<td>-0.1260</td>
<td>-0.1148</td>
<td>-0.1152</td>
</tr>
<tr>
<td>lagged CAPEX</td>
<td>1.3034***</td>
<td>1.8254***</td>
<td>1.9821***</td>
<td>1.7468***</td>
</tr>
<tr>
<td>lagged Sales growth</td>
<td>0.2139***</td>
<td>0.3068***</td>
<td>0.3019***</td>
<td>0.3329***</td>
</tr>
<tr>
<td>lagged Size</td>
<td>-0.5689</td>
<td>-0.1825</td>
<td>-0.1845***</td>
<td>-0.1663***</td>
</tr>
<tr>
<td>lagged Age</td>
<td>-0.1303***</td>
<td>-0.2717***</td>
<td>-0.3000***</td>
<td>-0.2472***</td>
</tr>
<tr>
<td>lagged Diversification</td>
<td>-0.0325</td>
<td>-0.0167</td>
<td>-0.03252</td>
<td>-0.0216</td>
</tr>
<tr>
<td>lagged State tax</td>
<td>-0.003</td>
<td>-0.004</td>
<td>-0.005</td>
<td>-0.004</td>
</tr>
<tr>
<td>Firm fixed effects</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Year fixed effects</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Number of firm-years</td>
<td>23,803</td>
<td>23,803</td>
<td>15,001</td>
<td>23,803</td>
</tr>
<tr>
<td>R²</td>
<td>0.583</td>
<td>0.273</td>
<td>0.592</td>
<td>0.587</td>
</tr>
</tbody>
</table>
Table VIII. Instrumental Variables Estimation for Tobin’s Q

This table reports the results of Instrumental Variables (IV) estimation for Tobin’s Q. The endogenous (instrumented) variable is aggregate firm CSR score. The set of instruments is based on state political environment where a company is headquartered (president vote, democrats; congress, democrats; state government, democrats). President vote, democrats is the proportion of votes received by the democratic candidate for president election. Congress, democrats is 0.5×proportion of senators who are democrats + 0.5×proportion of representatives who are democrats. State government, democrats is 0.5×dummy if a governor is democrat + 0.25×dummy if upper Chamber is controlled by democrats + 0.25×dummy if lower Chamber is controlled by democrats. A full description of these instruments is in the Appendix. Specifications 1 and 2 are based on the full sample. In specifications 3 and 4, we exclude companies classified as geographically-focused. Every regression contains all of the control variables as in Table IV including firm fixed effects and year fixed effects. Standard errors are clustered by firm and year. The numbers in parentheses below the coefficient estimates are t-statistics for first-stage regressions and z-values for second-stage regressions. The superscripts *, **, *** indicate significance at the 10%, 5%, and 1% levels, respectively. We also report the following diagnostic tests: Low p-values for the F-statistics of the weak instruments test indicate that the instruments are non-weak (or that they are relevant). The reported F-test is for instruments only. High p-values for the F2-stat of the Hansen exogeneity of instruments (overidentifying restrictions) test indicate that the instruments can be treated as exogenous. R2 for the second-stage regression is not reported because it has no meaning in IV estimation.

<table>
<thead>
<tr>
<th>Specification</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
<td>Full sample</td>
<td>Full sample</td>
<td>Exclude geographically focused</td>
<td>Exclude geographically focused</td>
</tr>
<tr>
<td>Dependent variable</td>
<td>CSR</td>
<td>Tobin’s Q</td>
<td>CSR</td>
<td>Tobin’s Q</td>
</tr>
<tr>
<td>Regression stage</td>
<td>First stage</td>
<td>Second stage</td>
<td>First stage</td>
<td>Second stage</td>
</tr>
<tr>
<td>Instrument set</td>
<td>Political</td>
<td>Political</td>
<td>Political</td>
<td>Political</td>
</tr>
<tr>
<td>President vote, democrats</td>
<td>1.086*** (3.21)</td>
<td>2.5224*** (3.00)</td>
<td>0.3203 (1.32)</td>
<td>0.1693 (0.89)</td>
</tr>
<tr>
<td>Congress, democrats</td>
<td>0.1290*** (4.41)</td>
<td>0.1849*** (5.88)</td>
<td>0.3306*** (11.88)</td>
<td>0.2842*** (8.39)</td>
</tr>
<tr>
<td>State government, democrats</td>
<td>0.1290*** (4.41)</td>
<td>0.1849*** (5.88)</td>
<td>0.3306*** (11.88)</td>
<td>0.2842*** (8.39)</td>
</tr>
<tr>
<td>lagged Instrumented CSR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All control variables are included</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Number of firm-years</td>
<td>23,803</td>
<td>23,803</td>
<td>13,329</td>
<td>13,329</td>
</tr>
<tr>
<td>R2</td>
<td>0.452</td>
<td>0.452</td>
<td>0.480</td>
<td>0.480</td>
</tr>
<tr>
<td>Weak instruments test, F-stat.</td>
<td>23.488*** (0.00)</td>
<td>32.390*** (0.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hansen exogeneity test, χ2 stat.</td>
<td>2.120 (0.11)</td>
<td></td>
<td></td>
<td>1.820 (0.20)</td>
</tr>
</tbody>
</table>